如圖1,過△ABC頂點A作BC邊上的高AD和中線AE,點D是垂足,點E是BC中點,規(guī)定λA=
DEBE
.特別地,當D、E重合時,規(guī)定λA=0.另外對λB、λC也作類似規(guī)定.

(1)①當△ABC中,AB=AC時,則λA=
0
0
;②當△ABC中,λAB=0時,則△ABC的形狀是
等邊三角形
等邊三角形
;
(2)如圖2,在Rt△ABC中,∠A=30°,求λA和λC的值;
(3)如圖3,正方形網(wǎng)格中,格點△ABC的λA=
2
2
;
(4)判斷下列三種說法的正誤(正確的打“√”錯誤的打“×”)
①若△ABC中λA<1,則△ABC為銳角三角形
×
×
;
②若△ABC中λA=1,則△ABC為直角三角形

③若△ABC中λA>1,則△ABC為鈍角三角形

(5)通過本題解答,同學們應該有這樣的認識:一個無論多么陌生、多么綜合的問題,其實都來自于書本已學的基礎知識.因此,我們今后應重視基礎知識的學習;同時在解決問題時或者解決問題后,應該思考該問題的本質和目的:①鞏固哪些基礎知識;②培養(yǎng)我們哪些方面能力;③向我們滲透哪些數(shù)學思想.本題之所以是一道綜合題,就是因為涉及到的知識點多、面廣.下面就請你談談本題中所用到的、已學過的性質、定理、公理或判定等.(至少列舉兩條)
分析:(1)①根據(jù)題意畫出圖形,然后根據(jù)λA定義與等腰三角形三線合一的性質,即可求得λA=0,②根據(jù)λA定義與線段垂直平分線的性質,即可證得△ABC的形狀是等邊三角形;
(2)根據(jù)直角三角形斜邊上的中線等于斜邊的一半與特殊角的三角函數(shù)的值,即可求得答案;
(3)觀察圖形,根據(jù)λA的定義,即可求得λA的值;
(4)根據(jù)λA的定義,即可判定①②③的正確性;
(5)用到的定理:①等腰三角形中三線合一;②直角三角形斜邊上的中線等于斜邊的一半;③在直角三角形中,30°角所對的直角邊等于斜邊的一半等.
解答: 解:(1)①如圖:
∵AB=AC,
∴AD是BC的高,也是BC的中線,
即D與E重合,
∴λA=
DE
BE
=0;

②當△ABC中,λA=0時,
即DE=0,
∴AD是BC的高,也是BC的中線,
即AD是線段BC的垂直平分線,
∴AB=AC,
∵λB=0,
同理:BC=BA,
∴AB=BC=AC,
∴△ABC的形狀是等邊三角形;

(2)如圖,作BC邊上的中線AD,過點C作CE⊥AB于E,作AB邊上的中線CF,又AC⊥DC,
∴λA=
CD
BD
=1,
∵∠ACB=90°,
∴AF=CF,
∴∠ACF=∠CAF=30°,
∴∠CFE=60°,
∴λC=
EF
AF
=
EF
CF
=cos60°=
1
2


(3)如圖:λA=
DE
BE
=2;

(4)①×,②√,③√.

(5)用到的定理:①等腰三角形中三線合一;②直角三角形斜邊上的中線等于斜邊的一半;③在直角三角形中,30°角所對的直角邊等于斜邊的一半等.
故答案為:(1)0,等邊三角形;(3)2;(4)①×,②√,③√.
點評:此題考查了等腰三角形的判定與性質、直角三角形的判定與性質以及特殊角的三角函數(shù)問題.此題綜合性較強,屬于閱讀性與新定義性題目,題目難度較大,解題的關鍵是注意數(shù)形結合思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標系中,已知:△ABC的三個頂點的坐標分別是A(4,6)、B(0,0)、C(6,0).
(1)求AO、AB所在直線的函數(shù)解析式;
(2)在△AOB內可以作一個正方形CDEF,使它的三個頂點分別落在邊AO、AB上,E、F兩個頂點落在OB上,請求出這個正方形四個頂瞇的坐標,并在圖中畫出這個正方形;
(3)連接OC,在線段OC上任取一點P,過P作與x軸、y軸的不行線與OA、OB分別交于M、N兩點,過M作OB邊的垂線與OB交于H;你有什么發(fā)現(xiàn)?請寫出來,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

6、把等腰直角三角形ABC,按如圖所示立在桌上,頂點A頂著桌面,若另兩個頂點距離桌面5cm和3cm,則過另外兩個頂點向桌面作垂線,則垂足之間的距離DE的長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,半徑為2的正三角形ABC的中心為O,過O與兩個頂點畫弧,求這三條弧所圍成的陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系中,已知:△ABC的三個頂點的坐標分別是A(4,6)、B(0,0)、C(6,0).
(1)求AO、AB所在直線的函數(shù)解析式;
(2)在△AOB內可以作一個正方形CDEF,使它的三個頂點分別落在邊AO、AB上,E、F兩個頂點落在OB上,請求出這個正方形四個頂瞇的坐標,并在圖中畫出這個正方形;
(3)連接OC,在線段OC上任取一點P,過P作與x軸、y軸的不行線與OA、OB分別交于M、N兩點,過M作OB邊的垂線與OB交于H;你有什么發(fā)現(xiàn)?請寫出來,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《一次函數(shù)》(07)(解析版) 題型:解答題

(2006•黔東南州)如圖,在平面直角坐標系中,已知:△ABC的三個頂點的坐標分別是A(4,6)、B(0,0)、C(6,0).
(1)求AO、AB所在直線的函數(shù)解析式;
(2)在△AOB內可以作一個正方形CDEF,使它的三個頂點分別落在邊AO、AB上,E、F兩個頂點落在OB上,請求出這個正方形四個頂瞇的坐標,并在圖中畫出這個正方形;
(3)連接OC,在線段OC上任取一點P,過P作與x軸、y軸的不行線與OA、OB分別交于M、N兩點,過M作OB邊的垂線與OB交于H;你有什么發(fā)現(xiàn)?請寫出來,并說明理由.

查看答案和解析>>

同步練習冊答案