把下列各式分解因式

(1);

(2);

(3)2(mn)(a+2b-3c)-3(m+4n)(3ca-2b);

(4)m(mn)(ab)-3n(nm)(ba);

(5)a(ab)+b(ba).

答案:
解析:

(1)

=

=[2m-(ab)]

=(2mab).

(2)

=

=

=[n+(mn)]

=

(3)2(mn)(a+2b-3c)-3(m+4n)(3ca-2b)

=2(mn)(a+2b-3c)-3(m+4n)[-(a+2b-3c)]

=2(mn)(a+2b-3c)+3(m+4n)(a+2b-3c)

=(a+2b-3c)[2(mn)+3(m+4n)]

=(a+2b-3c)(2m-2n+3m+12n)

=(a+2b-3c)(5m+10n)

=5(m+2n)(a+2b-3c).

(4)m(mn)(ab)-3n(nm)(ba)

=m(mn)(ab)-3n[-(mn)][-(ab)]

=m(mn)(ab)-3n(mn)(ab)

=(mn)(ab)(m-3n).

(5)a(ab)+b(ba)=a(ab)-b(ab)

=(ab)(ab)=


提示:

(1)題應(yīng)把作為公因式;(2)題=,因?yàn)楣蚴綖?/FONT>;(3)題因?yàn)?ca-2b=-(a+2b-3c),所以公因式為(a+2b-3c);(4)題因?yàn)?nm)(ba)=(mn)(ab),所以公因式為(mn)(ab);題(5)公因式為(ab).


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、把下列各式分解因式:
(1)a4+64b4
(2)x4+x2y2+y4;
(3)x2+(1+x)2+(x+x22;
(4)(c-a)2-4(b-c)(a-b);
(5)x3-9x+8;
(6)x3+2x2-5x-6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

把下列各式分解因式:
(1)x3-x;              
(2)a3-2a2b+ab2;    
(3)3a2b-6ab2;
(4)-6a3+15ab2-9ac2;
(5)a(x-y)-x+y;    
(6)x2+4y2-4xy;
(7)x2(a-b)+4(b-a);     
(8)(x2+4)2-16x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

把下列各式分解因式.
(1)a3-a
(2)3x4-12x2
(3)9(x-y)2-4(x+y)2
(4)a2-49b2
(5)16x2y2z2-9
(6)x2y2-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

把下列各式分解因式.
(1)a2-1=
(a+1)(a-1)
(a+1)(a-1)

(2)a4-1=
(a2+1)(a+1)(a-1)
(a2+1)(a+1)(a-1)

(3)x2-2xy+y2=
(x-y)2
(x-y)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

把下列各式分解因式:
(1)x6-81x2y4         
(2)2x2-x-3        
(3)x2-7x-8  (4)a3-2a2+a     
(5)a2+6a+5     (6)7x2+13x-2
(7)-x2+4x+5       (8)-3x2+10x+8    
(9)x3z-4x2yz+4xy2z (10)x3z-4x2yz+4xy2z              
(11)x4+6x2+9  (12)(x-1)2-4(x-1)y+4y2           
(13)(x2-10)(x2+5)+54 (14)(a-b)(x-y)-(b-a)(x+y)       
(15)4m5+8m3n2+4mn4 (16)4a2+4ab+b2-1            
(17)x3-x2-2x+2.

查看答案和解析>>

同步練習(xí)冊(cè)答案