【題目】如圖,已知一次函數(shù)y=k1x+b的圖象分別與x軸、y軸的正半軸交于 A,B 兩點(diǎn),且與反比例函數(shù)y= 交于 C,E 兩點(diǎn),點(diǎn) C 在第二象限,過點(diǎn) C 作CD⊥x軸于點(diǎn) D,AC=2 ,OA=OB=1.

(1)△ADC 的面積;
(2)求反比例函數(shù)y= 與一次函數(shù)的y=k1x+b表達(dá)式.

【答案】
(1)解:∵OA=OB,

∠ABO=∠OAB=45°,

∵CD⊥x軸于D,

∴∠ADC=90°,

∴∠BAD=∠ACD=45°,

∴CD=AD,

∵AC=2

∴CD=AD= AC=2,

∴△ADC 的面積為 = =2


(2)解:∵OA=1,AD=2,

∴OD=1,

∵CD=2,

∴C的坐標(biāo)為(﹣1,2),

∵點(diǎn)C在反比例函數(shù)y= 的圖象上,

∴2= ,

∴k2=﹣2,

∴反比例函數(shù)的表達(dá)式為y=﹣ ;

∵一次函數(shù)y=k1x+b過B(0,1),C(﹣1,2),

∴代入得:

解得:b=1,k1=﹣1,

∴一次函數(shù)的表達(dá)式為y=﹣x+1


【解析】(1)先求由OA=OB,得∠ABO=∠OAB=45°,進(jìn)而算出CD=AD=2,最后算出面積;(2)先求C坐標(biāo),利用待定系數(shù)法,把BC坐標(biāo)代入直線解析式即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料,回答問題
在邊長(zhǎng)為1的正方形ABCD中,E是AB的中點(diǎn),CF⊥DE,F(xiàn)為垂足.

(1)△CDF與△DEA是否相似?說明理由;
(2)求CF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)F在線段AB上,點(diǎn)E,G在線段CD上,FGAE,∠1=2

(1)求證:ABCD;

(2)FGBC于點(diǎn)H,BC平分∠ABD,∠D=112°,求∠1的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長(zhǎng)為4P是對(duì)角線BD上一點(diǎn),PEBC于點(diǎn)E,PFCD于點(diǎn)F,連接AP,EF.給出下列結(jié)論:①PDDF;②四邊形PECF的周長(zhǎng)為8;③APD一定是等腰三角形;④APEF.其中正確結(jié)論的序號(hào)為(

A.①②④B.①②C.①④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司有、兩種型號(hào)的客車共20輛,它們的載客量、每天的租金如下表所示.已知在20輛客車都坐滿的情況下,共載客720人.

A型號(hào)客車

B型號(hào)客車

載客量(人/輛)

45

30

租金(元/輛)

600

450

(1)求、兩種型號(hào)的客車各有多少輛?

(2)某中學(xué)計(jì)劃租用、兩種型號(hào)的客車共8輛,同時(shí)送七年級(jí)師生到沙家浜參加社會(huì)實(shí)踐活動(dòng),已知該中學(xué)租車的總費(fèi)用不超過4600元. 求最多能租用多少輛A型號(hào)客車?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一塊矩形木板,木工采用如圖的方式,在木板上截出兩個(gè)面積分別為18dm232dm2的正方形木板.

1)求剩余木料的面積.

2)如果木工想從剩余的木料中截出長(zhǎng)為1.5dm,寬為ldm的長(zhǎng)方形木條,最多能截出   塊這樣的木條.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了鼓勵(lì)市民節(jié)約用電,某市對(duì)居民用電實(shí)行階梯收費(fèi)(總電費(fèi)=第一階梯電費(fèi)+第二階梯電費(fèi)).規(guī)定:用電量不超過200度按第一階梯電價(jià)收費(fèi),超過200度的部分按第二階梯電價(jià)收費(fèi).如圖是張磊家20181月和3月所交電費(fèi)的收據(jù),則該市規(guī)定的第一階梯電價(jià)和第二階梯電價(jià)分別為每度( 。

A. 0.5元、0.6 B. 0.4元、0.5 C. 0.3元、0.4 D. 0.6元、0.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)△ABC和△CDE都是等邊三角形,且∠EBD=62°,則∠AEB的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“綠滿重慶”行動(dòng)中,江北區(qū)種植了大量的小葉榕和銀杏樹,根據(jù)林業(yè)專家的分析,樹葉在進(jìn)行光合作用后產(chǎn)生的分泌物能在空氣中吸附懸浮顆粒,這樣就達(dá)到了滯塵凈化空氣的作用.

1)若某小區(qū)今年要種植銀杏樹和小葉榕共450株,且銀杏樹的數(shù)量不超過小葉榕數(shù)量的2倍,求今年該小區(qū)小葉榕至少種植多少株?

2)已知每一片銀杏樹葉一年平均滯塵量為,一株銀杏樹去年有3500片樹葉,冬季樹葉全部掉落后,今年新長(zhǎng)出了樹葉,且這株銀杏今年的滯塵量是去年滯塵量的11倍還多.已知每片小葉榕樹葉的滯塵量比銀杏樹葉多,一株小葉榕今年的樹葉總量比今年的這株銀杏要少,明年這株小葉榕樹葉將在今年的基礎(chǔ)上掉落,但又會(huì)新長(zhǎng)出1000片樹葉,若今明兩年這株小葉榕共滯塵量為,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案