【題目】某新農(nóng)村樂園設(shè)置了一個(gè)秋千場(chǎng)所,如圖所示,秋千拉繩OB的長(zhǎng)為3m,靜止時(shí),踏板到地面距離BD的長(zhǎng)為0.6m(踏板厚度忽略不計(jì)).為安全起見,樂園管理處規(guī)定:兒童的安全高度hm,成人的安全高度2m(計(jì)算結(jié)果精確到0.1m

1)當(dāng)擺繩OAOB45°夾角時(shí),恰為兒童的安全高度,則h   m

2)某成人在玩秋千時(shí),擺繩OCOB的最大夾角為55°,問此人是否安全?(參考數(shù)據(jù):≈1.41,sin55°≈0.82cos55°≈0.57,tan55°≈1.43

【答案】(1)1.5;(2)成人是安全的.

【解析】

1)根據(jù)余弦定理先求出OE,再根據(jù)AF=OB+BD,求出DE,即可得出h的值;
2)過C點(diǎn)作CMDF,交DF于點(diǎn)M,根據(jù)已知條件和余弦定理求出OE,再根據(jù)CM=OB+DE-OE,求出CM,再與成人的安全高度進(jìn)行比較,即可得出答案.

解:(1)在RtANO中,∠ANO90°,

cosAON,

ONOAcosAON

OAOB3m,∠AON45°,

ON3cos45°≈2.12m

ND3+0.62.12≈1.5m,

hNDAF≈1.5m;

故答案為1.5

2)如圖,過C點(diǎn)作CMDF,交DF于點(diǎn)M,

RtCEO中,∠CEO90°,

cosCOE

OEOCcosCOF,

OBOC3m,∠CON55°,

OE3cos55°≈1.72m,

ED3+0.61.72≈1.9m,

CMED≈1.9m,

∵成人的安全高度2m,

∴成人是安全的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課上,張老師出示了問題:如圖1,四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn).AEF=90°,且EF交正方形外角∠DCG的平分線CF于點(diǎn)F,求證:AE=EF.

經(jīng)過思考,小明展示了一種正確的解題思路:在AB上截取BM=BE,連接ME,則AM=EC,易證AME≌△ECF,所以AE=EF.

在此基礎(chǔ)上,同學(xué)們作了進(jìn)一步的研究:

(1)小穎提出:如圖2,如果把點(diǎn)E是邊BC的中點(diǎn)改為點(diǎn)E是邊BC(B,C)的任意一點(diǎn),其它條件不變,那么結(jié)論“AE=EF”仍然成立,你認(rèn)為小穎的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請(qǐng)說明理由;

(2)小華提出:如圖3,點(diǎn)EBC的延長(zhǎng)線上(C點(diǎn)外)的任意一點(diǎn),其他條件不變,結(jié)論“AE=EF”仍然成立。你認(rèn)為小華的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O

1)如圖1E,G分別是OBOC上的點(diǎn),CEDG的延長(zhǎng)線相交于點(diǎn)F.若DFCE,求證:OEOG;

2)如圖2HBC上的點(diǎn),過點(diǎn)HEHBC,交線段OB于點(diǎn)E,連結(jié)DHCE于點(diǎn)F,交OC于點(diǎn)G.若OEOG,

求證:∠ODG=∠OCE;

當(dāng)AB1時(shí),求HC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣2x2+8x﹣6與x軸交于點(diǎn)A、B,把拋物線在x軸及其上方的部分記作C1,將C1向右平移得C2,C2與x軸交于點(diǎn)B,D.若直線y=x+m與C1、C2共有3個(gè)不同的交點(diǎn),則m的取值范圍是( 。

A. ﹣2<m< B. ﹣3<m<﹣ C. ﹣3<m<﹣2 D. ﹣3<m<﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yax2+bx+c(a0)的對(duì)稱軸為直線x=﹣1,且拋物線經(jīng)過A(10),C(0,3)兩點(diǎn),與x軸交于點(diǎn)B

(1)若直線ymx+n經(jīng)過B、C兩點(diǎn),求直線BC和拋物線的解析式;

(2)在拋物線的對(duì)稱軸x=﹣1上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求出點(diǎn)M的坐標(biāo);

(3)設(shè)點(diǎn)P為拋物線的對(duì)稱軸x=﹣1上的一個(gè)動(dòng)點(diǎn),求使△BPC為直角三角形的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,三孔橋橫截面的三個(gè)孔都呈拋物線形,左右兩個(gè)拋物線形是全等的.正常水位時(shí),大孔水面寬度為,頂點(diǎn)距水面,小孔頂點(diǎn)距水面.當(dāng)水位上漲剛好淹沒小孔時(shí),大孔的水面寬度為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校園空地上有一面墻,長(zhǎng)度為20m,用長(zhǎng)為32m的籬笆和這面墻圍成一個(gè)矩形花圃,如圖所示.

(1)能圍成面積是126m2的矩形花圃嗎?若能,請(qǐng)舉例說明;若不能,請(qǐng)說明理由.

(2)若籬笆再增加4m,圍成的矩形花圃面積能達(dá)到170m2嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形中,經(jīng)順時(shí)針旋轉(zhuǎn)后與重合.

1)旋轉(zhuǎn)中心是點(diǎn) ,旋轉(zhuǎn)了 度;

2)如果,,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一段拋物線y=﹣x2+4(﹣2≤x≤2)為C1,與x軸交于A0,A1兩點(diǎn),頂點(diǎn)為D1;將C1繞點(diǎn)A1旋轉(zhuǎn)180°得到C2,頂點(diǎn)為D2;C1C2組成一個(gè)新的圖象,垂直于y軸的直線l與新圖象交于點(diǎn)P1(x1,y1),P2(x2,y2),與線段D1D2交于點(diǎn)P3(x3,y3),設(shè)x1,x2,x3均為正數(shù),t=x1+x2+x3,則t的取值范圍是( 。

A. 6<t≤8 B. 6≤t≤8 C. 10<t≤12 D. 10≤t≤12

查看答案和解析>>

同步練習(xí)冊(cè)答案