【題目】如圖,在△ABC中,AB=AC,∠A=120°,AB的垂直平分線交BC于M,交AB于E,AC的垂直平分線交BC于N,交AC于F,若MN=2,則AB長( )
A. B. 3 C. 2 D.
【答案】A
【解析】
連接AM、AN,根據(jù)三角形內(nèi)角和定理、等腰三角形的性質(zhì)得到∠B=∠C=30°,根據(jù)線段垂直平分線的性質(zhì)得到MB=MA,NA=NC,根據(jù)直角三角形的性質(zhì)計算.
連接AM、AN,
∵AB=AC,∠A=120°,
∴∠B=∠C=30°,
∵AB的垂直平分線交BC于M,交AB于E,AC的垂直平分線交BC于N,
∴MB=MA,NA=NC,
∴∠MAB=∠B,∠NAC=∠C,
∴∠MAB+∠NAC=∠B+∠C=60°,
∴∠MAN=60°,∠MNA=60°,
∴△MAN是等邊三角形,
∴MA=MN=2,
∴AB=2AE=,
故選:A.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD邊長為1,∠EAF=45°,AE=AF,則有下列結(jié)論:
①∠1=∠2=22.5°;
②點C到EF的距離是 -1;
③△ECF的周長為2;
④BE+DF>EF.
其中正確的結(jié)論是 . (寫出所有正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,DE⊥AD,交AB于點E,AE為⊙O的直徑
(1)判斷BC與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)求證:△ABD∽△DBE;
(3)若cosB= ,AE=4,求CD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線: 與x軸、y軸分別交于A、B兩點,直線與x軸、y軸分別交于C、兩點,且︰︰.
(1)求直線的解析式,并判斷的形狀;
(2)如圖,為直線上一點,橫坐標為,為直線上一動點,當最小時,將線段沿射線方向平移,平移后、的對應(yīng)點分別為、,當最小時,求點的坐標;
(3)如圖,將沿著軸翻折,得到,再將繞著點順時針旋轉(zhuǎn)()得到,直線與直線、軸分別交于點、.當為等腰三角形時,請直接寫出線段的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△EFG≌△NMH, ∠F與∠M是對應(yīng)角.
(1)寫出相等的線段與相等的角;
(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把一個足球垂直水平地面向上踢,時間為t(秒)時該足球距離地面的高度h(米)適用公式h=20t﹣5t2(0≤t≤4).
(1)當t=3時,求足球距離地面的高度;
(2)當足球距離地面的高度為10米時,求t;
(3)若存在實數(shù)t1 , t2(t1≠t2)當t=t1或t2時,足球距離地面的高度都為m(米),求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個小正方形邊長都是1.請同學們利用網(wǎng)格線進行畫圖:
(1)在圖1中,畫一個頂點為格點、面積為5的正方形;
(2)在圖2中,已知線段AB、CD,畫線段EF,使它與AB、CD組成軸對稱圖形;(要求畫出所有符合題意的線段)
(3)在圖3中,找一格點D,滿足:①到CB、CA的距離相等;②到點A、C的距離相等.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以O為坐標原點在正方形網(wǎng)格中建立直角坐標系,若每個小正方形的邊長都為1,網(wǎng)格中有一個格點△ABC(即三角形的頂點都在格點上).
(1)試在y軸上找一點P,使PC+PB的值最小,請在圖中標出P點的位置(留下作圖痕跡),并求出PC+PB的最小值;
(2)將△ABC先向下平移3個單位,再向右平移4個單位后得到△A1B1C1,請在圖中畫出△A1B1C1,并寫出點A1的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)計算:∣1-∣+ -(π-3.14)0
(2)已知 (x-1)2 =16,求x的值
(3)已知8(x-1)3 -27=0,求x的值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com