【題目】如圖,在紙面所在的平面內(nèi),一只電子螞蟻從數(shù)軸上表示原點(diǎn)的位置O點(diǎn)出發(fā),按向上、向右、向下、向右的方向依次不斷移動(dòng),每次移動(dòng)1個(gè)單位,其移動(dòng)路線如圖所示,第1次移動(dòng)到,第2次移動(dòng)到,第3次移動(dòng)到,……,第n次移動(dòng)到,則△O的面積是( )
A.504B.C.D.505
【答案】B
【解析】
根據(jù)圖可得移動(dòng)4次完成一個(gè)循環(huán),觀察圖形得出OA4n=2n,處在數(shù)軸上的點(diǎn)為A4n和A4n-1.由OA2016=1008,推出OA2019=1009,由此即可解決問(wèn)題.
解: 觀察圖形可知: OA4n=2n,且點(diǎn)A4n和點(diǎn)A4n-1在數(shù)軸上,
又2016=504×4,∴A2016在數(shù)軸上,且OA2016=1008,
∵2019=505×4-1,∴點(diǎn)A2019在數(shù)軸上,OA2019=1009,
∴△OA2A2019的面積=×1009×1=,
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC 中,∠C=90°,∠BAC 的平分線 AD 交 BC于點(diǎn) D,過(guò)點(diǎn) D 作 DE⊥AD 交 AB 于點(diǎn) E,以 AE 為直徑作⊙O.
(1)求證:BC 是⊙O 的切線;
(2)若 AC=3,BC=4,求 BE 的長(zhǎng).
(3)在(2)的條件中,求 cos∠EAD 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1) 將一副三角板中的兩塊直角三角尺的直角頂點(diǎn)O按如圖方式疊放在一起, ∠AOB=∠DOC=90°.
①如圖(1),若OD是∠AOB的平分線時(shí),求∠BOD和∠AOC的度數(shù).
②如圖(2),若OD不是∠AOB的平分線,試猜想∠AOC與∠BOD的數(shù)量關(guān)系,并說(shuō)明理由.
(2)如圖(3),如果兩個(gè)角∠AOB = ∠DOC= m°(0< m <90),直接寫出∠AOC與∠BOD的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=165°,OD平分∠AOC.
(1)若∠AOD=50°,求∠BOC度數(shù);
(2)若∠BOD=110°,那么OC是∠BOD的平分線嗎?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB為直徑,點(diǎn)D在⊙O上,過(guò)點(diǎn)D作⊙O切線與AC的延長(zhǎng)線交于點(diǎn)E,ED∥BC,連接AD交BC于點(diǎn)F.
(1)求證:∠BAD=∠DAE;
(2)若AB=6,AD=5,求DF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=x+m與y=nx+4n(n≠0)的交點(diǎn)的橫坐標(biāo)為2,則關(guān)于x的不等式x+m>nx+4n>0的整數(shù)解為 ( )
A. 1B. 3C. 4D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩個(gè)形狀、大小完全相同的含有、的直角三角板如圖①放置,、與直線重合,且三角板、三角板均可繞點(diǎn)逆時(shí)針旋轉(zhuǎn).
圖① 圖②
(1)直接寫出的度數(shù)是______.
(2)如圖②,在圖①基礎(chǔ)上,若三角板的邊從處開(kāi)始繞點(diǎn)逆時(shí)針旋轉(zhuǎn),轉(zhuǎn)速為4.5度/秒,同時(shí)三角板的邊從處開(kāi)始繞點(diǎn)逆時(shí)針旋轉(zhuǎn),轉(zhuǎn)速為0.5度/秒,(當(dāng)轉(zhuǎn)到與重合時(shí),兩三角板都停止轉(zhuǎn)動(dòng)),在旋轉(zhuǎn)過(guò)程中,當(dāng)與重合時(shí),求旋轉(zhuǎn)的時(shí)間是多少?
(3)在(2)的條件下,、、三條射線中,當(dāng)其中一條射線平分另兩條射線的夾角時(shí),請(qǐng)求出旋轉(zhuǎn)的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AB∥CD.
(1)如圖1,EOF是直線AB、CD間的一條折線,猜想∠1、∠2、∠3的數(shù)量關(guān)系,并說(shuō)明理由;
(2)如圖2,若點(diǎn)C在點(diǎn)D的右側(cè),BE平分∠ABC,DE平分∠ADC,BE、DF所在直線交于點(diǎn)E,若∠ADC=α,∠ABC=β,求∠BED的度數(shù)(用含有α、β的式子表示);
(3)在(2)的前提下將線段BC沿DC方向平移,使得點(diǎn)B在點(diǎn)A的右側(cè),其他條件不變,若∠ADC=α,∠ABC=β,求∠BED的度數(shù)(用含有α、β的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)平行四邊形ABCD對(duì)角線交點(diǎn)O的線段EF,分別交AD,BC于點(diǎn)E,F,當(dāng)AE=ED時(shí),△AOE的面積為4,則四邊形EFCD的面積是( 。
A.8B.12C.16D.32
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com