在等腰△ABC中,三邊分別為a、b、c,其中a=5,若關于x的方程x2+(b+2)x+6-b=0有兩個相等的實數(shù)根,求△ABC的周長.
【答案】分析:若一元二次方程有兩個相等的實數(shù)根,則根的判別式△=0,據(jù)此可求出b的值;進而可由三角形三邊關系定理確定等腰三角形的三邊長,即可求得其周長.
解答:解:∵關于x的方程x2+(b+2)x+6-b=0有兩個相等的實數(shù)根,
∴△=(b+2)2-4(6-b)=0,即b2+8b-20=0;
解得b=2,b=-10(舍去);
①當a為底,b為腰時,則2+2<5,構(gòu)不成三角形,此種情況不成立;
②當b為底,a為腰時,則5-2<5<5+2,能夠構(gòu)成三角形;
此時△ABC的周長為:5+5+2=12;
答:△ABC的周長是12.
點評:此題考查了根與系數(shù)的關系、等腰三角形的性質(zhì)及三角形三邊關系定理;在求三角形的周長時,不能盲目的將三邊相加,而應在三角形三邊關系定理為前提條件下分類討論,以免造成多解、錯解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知在等腰△ABC中,∠A=∠B=30°,過點C作CD⊥AC交AB于點D.
(1)尺規(guī)作圖:過A,D,C三點作⊙O(只要求作出圖形,保留痕跡,不要求寫作法);
(2)求證:BC是過A,D,C三點的圓的切線;
(3)若過A,D,C三點的圓的半徑為
3
,則線段BC上是否存在一點P,使得以P,D,B為頂點的三角形與△BCO相似?若存在,求出DP的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在等腰△ABC中,CD是底邊AB上的高,E是腰BC的中點,AE與CD交于F,現(xiàn)給出三條路線:
(a)A→F→C→E→B→D→A;
(b)A→C→E→B→D→F→A;
(c)A→D→B→E→F→C→A;
它們的長度分別記為L(a)、L(b)及L(c),則L(a)<L(b),L(a)<L(c),L(b)<L(c)中一定能成立的是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等腰△ABC中,AB=AC,AD⊥BC,垂足為D,且3BC=2AD.點E、F是AD的三等分點,則∠BEC+∠BFC+∠BAC=
180°
180°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等腰△ABC中,AB=AC,B(
3
,0
),A(2
3
,
3
).
(1)求點C的坐標;
(2)求△ABC的面積;
(3)如何平移△ABC,才能使A與原點O重合,并寫出此時所得的三角形三個頂點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在等腰△ABC中,AB=AC=13,BC=10,取BC所在的直線為x軸,且點B為原點建立直角坐標系.
(1)求△ABC三個頂點的坐標;
(2)求△ABC的面積.

查看答案和解析>>

同步練習冊答案