【題目】如圖,在矩形ABCD中,AB=16cm,BC=6cm,點P從A出發(fā)沿AB以3cm/s的速度向點B移動,一直到達點B為止;同時,點Q從點C出發(fā)沿以2cm/s的速度向點D移動.經過多長時間P、Q兩點的距離是10?

【答案】P,Q兩點從出發(fā)經過1.6或4.8秒時,點P,Q間的距離是10cm.

【解析】試題分析:作PH⊥CD,垂足為H,設運動時間為t秒,用t表示線段長,用勾股定理列方程求解.

當P在Q下方時,方法同上,只不過表示等邊三角形底邊一半的時候稍有不同.

試題解析:設P,Q兩點從出發(fā)經過t秒時,點P,Q間的距離是10cm

作PHCD,垂足為H,

則PH=BC=6,PQ=10,HQ=CD﹣AP﹣CQ=16﹣5t.

PH2+HQ2=PQ2

可得:(16﹣5t)2+62=102

解得t1=4.8,t2=1.6.

答:P,Q兩點從出發(fā)經過1.6或4.8秒時,點P,Q間的距離是10cm

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】太陽能光伏發(fā)電因其清潔、安全、便利、高效等特點,已成為世界各國普遍關注和重點發(fā)展的新興產業(yè),如圖是太陽能電池板支撐架的截面圖,其中的粗線表示支撐角鋼,太陽能電池板與支撐角鋼AB的長度相同,均為300cm,AB的傾斜角為,BE=CA=50cm,支撐角鋼CD,EF與底座地基臺面接觸點分別為D,F(xiàn),CD垂直于地面,于點E.兩個底座地基高度相同即點D,F(xiàn)到地面的垂直距離相同,均為30cm,點A到地面的垂直距離為50cm,求支撐角鋼CD和EF的長度各是多少cm結果保留根號

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一段拋物線:y=﹣xx2)(0≤x≤2)記為C1,它與x軸交于點OA1;將C1繞點A1旋轉180°C2,交x軸于點A2;將C2繞點A2旋轉180°C3,交x軸于點A3…如此進行下去,則C2019的頂點坐標是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小儒在學習了定理直角三角形斜邊上的中線等于斜邊的一半之后做了如下思考:

1)他認為該定理有逆定理,即如果一個三角形某條邊上的中線等于該邊長的一半,那么這個三角形是直角三角形應該成立,你能幫小儒證明一下嗎?如圖①,在ABC中,ADBC邊上的中線,若ADBDCD,求證:∠BAC90°

2)接下來,小儒又遇到一個問題:如圖②,已知矩形ABCD,如果在矩形外存在一點E,使得AECE,求證:BEDE,請你作出證明,可以直接用到第(1)問的結論.

3)在第(2)問的條件下,如果AED恰好是等邊三角形,直接用等式表示出此時矩形的兩條鄰邊ABBC的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙P的圓心P(m,n)在拋物線y=上.

(1)寫出mn之間的關系式;

(2)當⊙P與兩坐標軸都相切時,求出⊙P的半徑;

(3)若⊙P的半徑是8,且它在x軸上截得的弦MN,滿足0≤MN≤2時,求出m、n的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】反比例函數(shù)y的圖象如圖所示,以下結論:①常數(shù)m<﹣2;②若A(﹣1,h),B2,k)在圖象上,則hk;③yx的增大而減;④若Px,y)在圖象上,則P'(﹣x,﹣y)也在圖象上.其中正確的是( 。

A. ①②B. ③④C. ②③D. ②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)yax+ba≠0)的圖象與反比例函數(shù)yk≠0)的圖象相交于A、B兩點且點A的坐標為(3,1),點B的坐標(﹣1,n).

1)分別求兩個函數(shù)的解析式;

2)求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線yax2+bx3a0)與直線ykx+ck0)相交于A(﹣1,0)、B2,﹣3)兩點,且拋物線與y軸交于點C

1)求拋物線的解析式;

2)求出C、D兩點的坐標

3)在第四象限拋物線上有一點P,若△PCD是以CD為底邊的等腰三角形,求出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABCRtDEF中,∠C=F=90°,下列條件中不能判定這兩個三角形相似的是(  )

A. A=55°,D=35°

B. AC=9,BC=12,DF=6,EF=8

C. AC=3,BC=4,DF=6,DE=8

D. AB=10,AC=8,DE=15,EF=9

查看答案和解析>>

同步練習冊答案