在△ABC中∠C=90°,2∠A=∠B,∠A:∠B:∠C對(duì)邊分別為a,b,c,則a:b:c等于( )
A.1:2:1
B.1::1
C.1::2
D.1:2:
【答案】分析:根據(jù)直角三角形的性質(zhì)解答.
解答:解:設(shè)∠A=x°,則∠B=2x°,
∵△ABC中∠C=90°,2∠A=∠B,
∴∠A+∠B=90°,即x°+2x°=90°,
∴∠A=30°,∠B=60°,
設(shè)a=1,∴c=2
由勾股定理得b===
∴a:b:c=1::2.
故選C.
點(diǎn)評(píng):本題是一道根據(jù)直角三角形的性質(zhì)結(jié)合勾股定理求解的綜合題,有利于鍛煉學(xué)生綜合運(yùn)用所學(xué)知識(shí)的能力,是一道很好的題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,在△ABC中,CD⊥AB,垂足為D,點(diǎn)E在BC上,EF⊥AB,垂足為F.
(1)CD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠C=90°,∠A=30°,以AB、AC為邊向△ABC外作等邊△ABD和等邊△ACE.
精英家教網(wǎng)
(1)如圖1.連接BE、CD,BE與CD交于點(diǎn)O,
①證明:DC=BE;
②∠BOC=
 
°. (直接填答案)
(2)如圖2,連接DE,交AB于點(diǎn)F.DF與EF相等嗎?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖,在△ABC中,邊AC的垂直平分線交BC于點(diǎn)D,交AC于點(diǎn)E、已知△ABC中與△ABD的周長(zhǎng)分別為18cm和12cm,則線段AE的長(zhǎng)等于
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠C=90°,BC=12,AB=13,則tanA的值是( 。
A、
5
12
B、
12
5
C、
12
13
D、
5
13

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a=
2
,b=
6
,c=2
2
,則最大邊上的中線長(zhǎng)為( 。
A、
2
B、
3
C、2
D、以上都不對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案