(2012•大田縣質(zhì)檢)在平面直角坐標(biāo)系xOy中,拋物線y=-x2+bx+c與x軸交于A(-1,0),B(-3,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點(diǎn)為D,點(diǎn)P在拋物線的對(duì)稱軸上,且∠APD=∠ACB,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)Q在直線BC上方的拋物線上,且點(diǎn)Q到直線BC的距離最遠(yuǎn),求點(diǎn)Q坐標(biāo).

【答案】分析:(1)將A、B的坐標(biāo)代入拋物線的解析式中,即可求出待定系數(shù)的值;
(2)根據(jù)(1)得到的函數(shù)解析式,可求出D、C的坐標(biāo);易證得△OBC是等腰Rt△,若過(guò)A作BC的垂線,設(shè)垂足為E,在Rt△ABE中,根據(jù)∠ABE的度數(shù)及AB的長(zhǎng)即可求出AE、BE、CE的長(zhǎng);連接AC,設(shè)拋物線的對(duì)稱軸與x軸的交點(diǎn)為F,若∠APD=∠ACB,那么△AEC與△AFP,根據(jù)得到的比例線段,即可求出PF的長(zhǎng),也就求得了P點(diǎn)的坐標(biāo);
(3)當(dāng)Q到直線BC的距離最遠(yuǎn)時(shí),△QBC的面積最大(因?yàn)锽C是定長(zhǎng)),可過(guò)Q作y軸的平行線,交BC于S;根據(jù)B、C的坐標(biāo),易求出直線BC的解析式,可設(shè)出Q點(diǎn)的坐標(biāo),根據(jù)拋物線和直線BC的解析式,分別表示出Q、S的縱坐標(biāo),即可得到關(guān)于QS的長(zhǎng)以及Q點(diǎn)橫坐標(biāo)的函數(shù)關(guān)系式,以QS為底,B、C橫坐標(biāo)差的絕對(duì)值為高可得到△QBC的面積,由于B、C橫坐標(biāo)差的絕對(duì)值為定值,那么QS最長(zhǎng)時(shí),△QBC的面積最大,此時(shí)Q離BC的距離最遠(yuǎn);可根據(jù)上面得到的函數(shù)的性質(zhì)求出QS的最大值及對(duì)應(yīng)的Q點(diǎn)橫坐標(biāo),然后將其代入拋物線的解析式中,即可求出Q點(diǎn)的坐標(biāo).
解答:解:(1)∵拋物線y=-x2+bx+c經(jīng)過(guò)A(-1,0),B(-3,0),

解得:
∴拋物線的解析式為y=-x2-4x-3(4分)

(2)由y=-x2-4x-3
可得D(-2,1),C(0,-3)
∴OB=3,OC=3,OA=1,AB=2
可得△OBC是等腰直角三角形
∴∠OBC=45°,(5分)
如圖,設(shè)拋物線對(duì)稱軸與x軸交于點(diǎn)F,

過(guò)點(diǎn)A作AE⊥BC于點(diǎn)E
∴∠AEB=90°
可得,(6分)
在△AEC與△AFP中,∠AEC=∠AFP=90°,∠ACE=∠APF,
∴△AEC∽△AFP(7分)
,
解得PF=2(8分)
∵點(diǎn)P在拋物線的對(duì)稱軸上,
∴點(diǎn)P的坐標(biāo)為(-2,2)或(-2,-2)(9分)

(3)設(shè)直線BC的解析式y(tǒng)=kx+b,
直線BC經(jīng)過(guò)B(-3,0),C(0,-3),

解得:k=-1,b=-3,
∴直線BC的解析式y(tǒng)=-x-3(10分)
設(shè)點(diǎn)Q(m,n),過(guò)點(diǎn)Q作QH⊥BC于H,并過(guò)點(diǎn)Q作QS∥y軸交直線BC于點(diǎn)S,則S點(diǎn)坐標(biāo)為(m,-m-3)
∴QS=n-(-m-3)=n+m+3(11分)
∵點(diǎn)Q(m,n)在拋物線y=-x2-4x-3上,
∴n=-m2-4m-3
∴QS=-m2-4m-3+m+3
=-m2-3m
=
當(dāng)m=時(shí),QS有最大值(12分)
∵BO=OC,∠BOC=90°,
∴∠OCB=45°
∵QS∥y軸,
∴∠QSH=45°
∴△QHS是等腰直角三角形;
∴當(dāng)斜邊QS最大時(shí)QH最大;(13分)
∵當(dāng)m=時(shí),QS最大,
∴此時(shí)n=-m2-4m-3=-+6-3=;
∴Q(-,);(14分)
∴Q點(diǎn)的坐標(biāo)為(-)時(shí),點(diǎn)Q到直線BC的距離最遠(yuǎn).
(注:1、如果學(xué)生有不同的解題方法,只要正確,可參考評(píng)分標(biāo)準(zhǔn),酌情給分;2、對(duì)第(3)題,如果只用△=0求解,扣(2分).理由:△=0判斷只有一個(gè)交點(diǎn),不是充分條件)
點(diǎn)評(píng):此題考查了二次函數(shù)解析式的確定、相似三角形的判定和性質(zhì)、函數(shù)圖象交點(diǎn)及圖形面積的求法等知識(shí),綜合性強(qiáng),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•大田縣質(zhì)檢)在體育中考中,某校參加仰臥起坐測(cè)試的某一組女生成績(jī)?nèi)缦拢?4、45、42、48、46、47、45.(單位:次/分)則這組數(shù)據(jù)的極差和眾數(shù)分別為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•大田縣質(zhì)檢)某中學(xué)開(kāi)展“大課間”活動(dòng),主要有以下運(yùn)動(dòng)項(xiàng)目:跳繩、羽毛球、籃球、乒乓球、踢毽子等5項(xiàng).九年級(jí)(2)班從中任選一項(xiàng)是籃球的概率是
1
5
1
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•大田縣質(zhì)檢)如圖,在△ABC中,分別以點(diǎn)A和點(diǎn)B為圓心,大于
12
AB
的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)M,N,作直線MN,交BC于點(diǎn)D,連接AD.若△ADC的周長(zhǎng)為12,AB=16,則△ABC的周長(zhǎng)為
28
28

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•大田縣質(zhì)檢)(1)22-2×
12
+|-2|+20120
(2)先化簡(jiǎn),后求值:(x+3)2+(x+2)(x-2),其中x=-2.

查看答案和解析>>

同步練習(xí)冊(cè)答案