【題目】在一個不透明的袋子里裝有4個小球,分別標(biāo)有數(shù)字1,23,4;這些小球除所標(biāo)數(shù)字不同外,其余完全相同,甲乙兩人每次同時從袋中各隨機(jī)摸出一個小球,記下球上的數(shù)字,并計算它們的積.

請用畫樹狀圖或列表的方法,求兩數(shù)積是8的概率;

甲乙兩人想用這種方式做游戲,他們規(guī)定,當(dāng)兩數(shù)之積是偶數(shù)時,甲得1分,當(dāng)兩數(shù)之積是奇數(shù)時,乙得3分,你認(rèn)為這個游戲公平嗎?請說明理由,若你認(rèn)為不公平,請修改得分規(guī)則,使游戲公平.

【答案】(1);(2)此游戲不公平;修改規(guī)則為:當(dāng)兩數(shù)之積是偶數(shù)時,甲得1分,當(dāng)兩數(shù)之積是奇數(shù)時,乙得5分.

【解析】

(1)根據(jù)題意畫出樹狀圖,然后根據(jù)樹狀圖求得所有可能的結(jié)果和兩數(shù)積是8的情況,再利用概率公式即可求得答案;

(2)先分別求出兩數(shù)積是偶數(shù)與兩數(shù)積是奇數(shù)的概率,然后比較得分是否相同,若不同根據(jù)所得概率修改得分歸則即可.

畫樹狀圖得:

共有12種等可能的結(jié)果,兩次摸出的小球的數(shù)字積是8的有2種情況,

兩數(shù)積是8的概率為

兩數(shù)之積是偶數(shù)的有10種情況,兩數(shù)之積是奇數(shù)的有2種情況,

兩數(shù)之積是偶數(shù),兩數(shù)之積是奇數(shù)

,

此游戲不公平;

修改規(guī)則為:當(dāng)兩數(shù)之積是偶數(shù)時,甲得1分,當(dāng)兩數(shù)之積是奇數(shù)時,乙得5分.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“加油向未來”電視節(jié)目中,王清和李北進(jìn)行無人駕駛汽車運(yùn)送貨物表演,王清操控的快車和李北操控的慢車分別從兩地同時出發(fā),相向而行.快車到達(dá)地后,停留3秒卸貨,然后原路返回地,慢車到達(dá)地即停運(yùn)休息,如圖表示的是兩車之間的距離(米)與行駛時間(秒)的函數(shù)圖象,根據(jù)圖象信息,計算的值分別為( 。

A. 39,26B. 39,26.4C. 3826D. 38,26.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,B=90°,點EAC的中點,AC=2AB,BAC的平分線ADBC于點D,作AFBC,連接DE并延長交AF于點F,連接FC.

求證:四邊形ADCF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某園林局有甲、乙、丙三個植樹隊,已知甲隊植樹棵,乙隊植樹的棵樹比甲隊植的棵數(shù)的2倍還多8棵,丙隊植樹的棵數(shù)比乙隊植的棵數(shù)的一半少6棵。

1)問甲隊植樹的棵數(shù)多還是丙隊植樹的棵數(shù)多?多多少棵?

2)三個隊一共植樹多少棵?

3)假設(shè)三隊共植樹2546棵,求三個隊分別植樹多少棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2014年,“即墨古城”在即墨區(qū)破土重建,2016年建成,現(xiàn)已成為青島北部一個重要的旅游景點,為了衡量古城“潮!遍T的高度,在數(shù)學(xué)課外實踐活動中,小明分別在如圖所示的A,B兩點處,利用測角儀對“潮!保T的最高點C進(jìn)行了測量,測得,,若米,求“潮海”門的最高點C到地面的高度為多少米?結(jié)果精確到1米,參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖中是拋物線拱橋,P處有一照明燈,點P到水面OA的距離為,從O、A兩處觀測P處,仰角分別為,且,,以O為原點,OA所在直線為x軸建立直角坐標(biāo)系,已知拋物線方程為

求拋物線方程,并求拋物線上的最高點到水面的距離;

水面上升1m,水面寬多少,結(jié)果精確到?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AC平分∠DAB,CEABE,AB=AD+2BE,則下列結(jié)論:①AB+AD=2AE;②∠DAB+DCB=180°;③CD=CB;④SACE2SBCE=SADC;其中正確結(jié)論的個數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AMBN,∠B40°,點PBN上一動點(與點B不重合).AC、AD分別平分∠BAP和∠PAM,交射線BN于點C、D

1)求∠CAD的度數(shù);

2)當(dāng)點P運(yùn)動到當(dāng)∠ACB=∠BAD時,求∠BAC的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案