【題目】模型建立:如圖1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直線ED經(jīng)過點C,過A作AD⊥ED于D,過B作BE⊥ED于E.
(1)求證:△BEC≌△CDA;
(2)模型應(yīng)用:
①已知直線l1:y=- x-4與y軸交于A點,將直線l1繞著A點逆時針旋轉(zhuǎn)45°至l2 , 如圖2,求l2的函數(shù)解析式;
②如圖3,矩形ABCO,O為坐標(biāo)原點,B的坐標(biāo)為(8,-6),A、C分別在坐標(biāo)軸上,P是線段BC上動點,設(shè)PC=m,已知點D在第四象限,且是直線y=-2x+6上的一點,若△APD是不以點A為直角頂點的等腰Rt△,請求出點D的坐標(biāo).
【答案】
(1)證明:∵△ABC為等腰直角三角形,∴CB=CA,又∵AD⊥CD,BE⊥EC,∴∠D=∠E=90°,∠ACD+∠BCE=180°-90°=90°,又∵∠EBC+∠BCE=90°,∴∠ACD=∠EBC,在△ACD與△CBE中, ,∴△ACD≌△EBC(AAS)
(2)解:①如圖1,過點B作BC⊥AB于點B,交l2于點C,過C作CD⊥x軸于D,
∵∠BAC=45°,∴△ABC為等腰Rt△,由(1)可知:△CBD≌△BAO,∴BD=AO,CD=OB,∵直線l1:y=- x-4, ∴A(0,-4),B(-3,0),∴BD=AO=4.CD=OB=3,∴OD=4+3=7,∴C(-7,-3),設(shè)l2的解析式為y=kx+b(k≠0),∴ ∴ .
∴l(xiāng)2的解析式:y=- x-4.
②當(dāng)點D位于直線y=2x-6上時,分三種情況:如圖2,
1)點D為直角頂點,分兩種情況:當(dāng)點D在矩形AOCB的內(nèi)部時,過D作x軸的平行線EF,交直線OA于E,交直線BC于F,設(shè)D(x,2x-6);則OE=2x-6,AE=6-(2x-6)=12-2x,DF=EF-DE=8-x;則△ADE≌△DPF,得DF=AE,即:12-2x=8-x,x=4;∴D(4,2);
當(dāng)點D在矩形AOCB的外部時,設(shè)D(x,2x-6);則OE=2x-6,AE=OE-OA=2x-6-6=2x-12,DF=EF-DE=8-x;
同1可知:△ADE≌△DPF,∴AE=DF,即:2x-12=8-x, x= ,∴D( )
2)點P為直角頂點,顯然此時點D位于矩形AOCB的外部;設(shè)點D(x,2x-6),則CF=2x-6,BF=2x-6-6=2x-12;
同(1)可得,△APB≌△BDF,∴AB=PF=8,PB=DF=x-8;∴BF=PF-PB=8-(x-8)=16-x;聯(lián)立兩個表示BF的式子可得:2x-12=16-x,即x= ,∴D( ).
綜上所述,點D坐標(biāo)為(4,-2)或( )或( ).
【解析】(1)先根據(jù)△ABC為等腰直角三角形得出CB=CA,再由AAS定理可知△ACD≌△CBE;
(2)①過點B作BC⊥AB于點B,交l2于點C,過C作CD⊥x軸于D,根據(jù)∠BAC=45°可知△ABC為等腰Rt△,由(1)可知△CBD≌△BAO,由全等三角形的性質(zhì)得出C點坐標(biāo),利用待定系數(shù)法求出直線l2的函數(shù)解析式即可;②分兩種情況考慮:如圖2所示,1))點D為直角頂點,分兩種情況:當(dāng)點D在矩形AOCB的內(nèi)部時,過D作x軸的平行線EF,交直線OA于E,交直線BC于F,設(shè)D(x,2x-6);則OE=2x-6,AE=6-(2x-6)=12-2x,DF=EF-DE=8-x,利用三角形全等得到DF=AE,即:12-2x=8-x,得x=4,易得D點坐標(biāo);當(dāng)點D在矩形AOCB的外部時,設(shè)D(x,2x-6);則OE=2x-6,AE=OE-OA=2x-6-6=2x-12,DF=EF-DE=8-x;同1可知:△ADE≌△DPF,AE=DF,即:2x-12=8-x, x= ,易得D點的坐標(biāo);2)點P為直角頂點,顯然此時點D位于矩形AOCB的外部如圖3所示,設(shè)點D(x,2x-6),則CF=2x-6,BF=2x-6-6=2x-12;同(1)可得,△APB≌△BDF,利用三角形全等可得AB=PF=8,PB=DF=x-8;故BF=PF-PB=8-(x-8)=16-x,即可確定出D點坐標(biāo)。
【考點精析】本題主要考查了等腰直角三角形和確定一次函數(shù)的表達(dá)式的相關(guān)知識點,需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每年淘寶網(wǎng)都會舉辦“雙十一”購物狂歡節(jié),許多商家都會利用這個契機進(jìn)行打折讓利的促銷活動.甲網(wǎng)店銷售一件A商品的成本為36元,網(wǎng)上標(biāo)價為110元.“雙十一”活動當(dāng)天,為了吸引買主,連續(xù)兩次降價銷售A商品,問平均每次降價率為多少時,才能使這件A商品的利潤率為10%?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點O與坐標(biāo)原點重合,點C的坐標(biāo)為(0,3),點A在x軸的負(fù)半軸上,點D、M分別在邊AB、OA上,且AD=2DB,AM=2MO,一次函數(shù)y=kx+b的圖象過點D和M,反比例函數(shù)y =的圖象經(jīng)過點D,與BC的交點為N.
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)若點P在直線DM上,且使△OPM的面積與四邊形OMNC的面積相等,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探索與研究:
方法1:如圖(a),對任意的符合條件的直角三角形繞其銳角頂點旋轉(zhuǎn)90°所得,所以
∠BAE=90°,且四邊形ACFD是一個正方形,它的面積和四邊形ABFE面積相等,而四邊形ABFE面積等于Rt△BAE和Rt△BFE的面積之和,根據(jù)圖示寫出證明勾股定理的過程;
方法2:如圖(b),是任意的符合條件的兩個全等的Rt△BEA和Rt△ACD拼成的,你能根據(jù)圖示再寫一種證明勾股定理的方法嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點P位于x軸下方,距離x軸5個單位,位于y軸右方,距離y軸3個單位,那么P點的坐標(biāo)是( )
A.(5,-3) B.(3,-5) C.(-5,3) D.(-3,5)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com