【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,則下列結(jié)論:①ac<0;②方程ax2+bx+c=0的兩根之和大于0;③y隨x的增大而增大;④a﹣b+c<0.其中正確的是(
A.①②③
B.②③④
C.①③④
D.①②④

【答案】D
【解析】解:由圖象可知,拋物線開口向下, ∴a<0,
又∵拋物線與y軸的交點(diǎn)位于y軸坐標(biāo)軸上,
∴c>0,
∴ac<0,故①正確;
∵對(duì)稱軸x=﹣ >0,a<0,
∴b>0,
∵方程ax2+bx+c=0的兩根之和等于﹣ ,
∴﹣ >0,故②正確;
由圖象可知:x 時(shí),y隨著x的增大而增大,
x> 時(shí),y隨著x的增大而減少,故③錯(cuò)誤;
令x=﹣1,y=a﹣b+c
由圖象可知:a﹣b+c<0,故④正確;
故選:D.

【考點(diǎn)精析】根據(jù)題目的已知條件,利用二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系和拋物線與坐標(biāo)軸的交點(diǎn)的相關(guān)知識(shí)可以得到問題的答案,需要掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時(shí),拋物線開口向上; a<0時(shí),拋物線開口向下b與對(duì)稱軸有關(guān):對(duì)稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c);一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒有交點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ABC=90°,AB=BC,點(diǎn)E、F在AC上,∠EBF=45°,若AE=1,CF=2,則AB的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖①、②、③均是4×4的正方形網(wǎng)格,每個(gè)小正方形頂點(diǎn)叫做格點(diǎn),點(diǎn)O和線段AB的端點(diǎn)在格點(diǎn)上,按要求完成下列作圖.

(1)在圖①、②中分別找到格點(diǎn)C、D,使以點(diǎn)A、B、C、D為頂點(diǎn)的四邊形是平行四邊形,且點(diǎn)O到這個(gè)四邊形的兩個(gè)端點(diǎn)的距離相等,畫出兩個(gè)這樣的平行四邊形.
(2)在圖③中找到格點(diǎn)E、F,使以A、B、E、F為頂點(diǎn)的四邊形的面積最大,且點(diǎn)O到這個(gè)四邊形的兩個(gè)端點(diǎn)的距離相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么一次函數(shù)y=ax+b的圖象大致是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O中,直徑CD⊥弦AB于E,AM⊥BC于M,交CD于N,連接AD.
(1)求證:AD=AN;
(2)若AB=8,ON=1,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種型號(hào)油電混合動(dòng)力汽車,從A地到B地燃油行駛純?nèi)加唾M(fèi)用76元,從A地到B地用電行駛純電費(fèi)用26元,已知每行駛1千米,純?nèi)加唾M(fèi)用比純用電費(fèi)用多0.5元.
(1)求每行駛1千米純用電的費(fèi)用;
(2)若要使從A地到B地油電混合行駛所需的油、電費(fèi)用合計(jì)不超過39元,則至少用電行駛多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AB=6,BC=8,以C為圓心適當(dāng)長為半徑畫弧分別交BC,CD于M,N兩點(diǎn),分別以M,N為圓心,以大于 MN的長為半徑畫弧,兩弧在∠BCD的內(nèi)部交于點(diǎn)P,連接CP并延長交AD于E,交BA的延長線于F,則AE+AF的值等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商家預(yù)測(cè)一種應(yīng)季襯衫能暢銷市場(chǎng),就用13200元購進(jìn)了一批這種襯衫,面市后果然供不應(yīng)求,商家又用28800元購進(jìn)了第二批這種襯衫,所購數(shù)量是第一批購進(jìn)量的2倍,但單價(jià)貴了10元.
(1)該商家購進(jìn)的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標(biāo)價(jià)銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤不低于25%(不考慮其他因素),那么每件襯衫的標(biāo)價(jià)至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,Rt△ABC中,∠BAC=90°,∠C=30°,BC=2,⊙O是△ABC的外接圓,D是CB延長線上一點(diǎn),且BD=1,連接DA,點(diǎn)P是射線DA上的動(dòng)點(diǎn).
(1)求證DA是⊙O的切線;
(2)DP的長度為多少時(shí),∠BPC的度數(shù)最大,最大度數(shù)是多少?請(qǐng)說明理由.
(3)P運(yùn)動(dòng)的過程中,(PB+PC)的值能否達(dá)到最小,若能,求出這個(gè)最小值,若不能,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案