【題目】已知和都是等腰直角三角形,,點是的中點,連接,.
(1)當點,分別在和上時,如圖1,試猜想線段和的數量關系,請直接寫出你得到的結論(不要求證明);
(2)將繞點逆時針方向旋轉一定角度后(旋轉角度大于,小于或等于),如圖2,請問:(1)中的結論是否仍然成立?如果成立,請給予證明;如果不成立,請說明理由.
【答案】(1)AE=BF;(2)(1)中的結論仍然成立,證明見解析
【解析】
(1)根據等腰直角三角形的性質,通過證明三角形全等即可得結論;
(2)根據旋轉的性質得角相等,然后證明三角形全等即可得結論.
解:(1)AE=BF.
∵△ABC和△DEF是等腰三角形,D是BC的中點,
∴AD=BD=DC,AD⊥BC,
∴∠ADC=∠ADB=90°,DE=DF,
在△BDF與△ADE中,
,
∴△BDF≌△ADE(SAS)
∴AE=BF.
(2)(1)中的結論仍然成立.理由如下:
如圖:連接AD,
∵△ABC和△DEF是等腰三角形,D是BC的中點,
∴AD=BD=DC,AD⊥BC,
∴∠ADC=∠ADB=90°,DE=DF,
根據旋轉的性質,可知
∠CDE=∠ADF,
又∠BDF=90°∠ADF,∠ADE=90°∠CDE,
∴∠BDF=∠ADE
∴△BDF≌△ADE(SAS)
∴BF=AE.
科目:初中數學 來源: 題型:
【題目】如圖,已知∠ACB=∠DBC,添加以下條件,不能判定△ABC≌△DCB的是( 。
A.∠ABC=∠DCBB.∠ABD=∠DCA
C.AC=DBD.AB=DC
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,長方形OABC的邊OA、OC分別在x軸、y軸上,B點坐標是(8,4),將△AOC沿對角線AC翻折得△ADC,AD與BC相交于點E.
(1)求證:△CDE≌△ABE
(2)求E點坐標;
(3)如圖2,動點P從點A出發(fā),沿著折線A→B→C→O運動(到點O停止),是否存在點P,使得△POA的面積等于△ACE的面積,若存在,直接寫出點P坐標,若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個正方形AOBC各頂點的坐標分別為A(0,3),O(0,0),B(3,0),C(3,3).若以原點為位似中心,將這個正方形的邊長縮小為原來的,則新正方形的中心的坐標為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知二次函數y=ax2+x+c(a≠0)的圖象與y軸交于點A(0,4),與x軸交于點B、C,點C坐標為(8,0),連接AB、AC.
(1)請直接寫出二次函數y=ax2+x+c的表達式;
(2)判斷△ABC的形狀,并說明理由;
(3)若點N在x軸上運動,當以點A、N、C為頂點的三角形是等腰三角形時,請寫出此時點N的坐標;
(4)如圖2,若點N在線段BC上運動(不與點B、C重合),過點N作NM∥AC,交AB于點M,當△AMN面積最大時,求此時點N的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某蓄水池的排水管每小時排水8立方米,6小時可將滿池水全部排空.
(1)蓄水池的容積是多少?
(2)如果每小時排水量用Q表示,求排水時間t與Q的函數關系式.
(3)如果5小時內把滿池水排完,那么每小時排水量至少是多少?
(4)已知排水管最大排水量是每小時12立方米,那么最少要多少小時才能將滿池水全部排空?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(2016湖北省荊門市)如圖,已知點A(1,2)是反比例函數圖象上的一點,連接AO并延長交雙曲線的另一分支于點B,點P是x軸上一動點;若△PAB是等腰三角形,則點P的坐標是______________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某電器商場銷售甲、乙兩種品牌空調,已知每臺乙種品牌空調的進價比每臺甲種品牌空調的進價高20%,用7200元購進的乙種品牌空調數量比用3000元購進的甲種品牌空調數量多2臺.
(1)求甲、乙兩種品牌空調的進貨價;
(2)該商場擬用不超過16000元購進甲、乙兩種品牌空調共10臺進行銷售,其中甲種品牌空調的售價為2500元/臺,乙種品牌空調的售價為3500元/臺.請您幫該商場設計一種進貨方案,使得在售完這10臺空調后獲利最大,并求出最大利潤.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示的正方形網格中,△ABC的頂點均在格點上,請在所給直角坐標系中按要求畫圖和解答下列問題:
(1)將△ABC沿x軸翻折后再沿x軸向右平移1個單位,在圖中畫出平移后的△A1B1C1.
(2)作△ABC關于坐標原點成中心對稱的△A2B2C2.
(3)求B1的坐標 C2的坐標 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com