(2008•廈門)已知:拋物線y=x2+(b-1)x+c經(jīng)過點P(-1,-2b).
(1)求b+c的值;
(2)若b=3,求這條拋物線的頂點坐標;
(3)若b>3,過點P作直線PA⊥y軸,交y軸于點A,交拋物線于另一點B,且BP=2PA,求這條拋物線所對應的二次函數(shù)關(guān)系式.(提示:請畫示意圖思考)
【答案】分析:(1)因為拋物線y=x2+(b-1)x+c經(jīng)過點P(-1,-2b),所以將點P代入解析式即可求得;
(2)因為b=3,所以求得c的值,即可求得拋物線的解析式,然后利用配方法求出頂點坐標;
(3)解此題的關(guān)鍵是首先確定函數(shù)的草圖,即開口方向是向上,對稱軸為x=,在y軸的左側(cè),根據(jù)題意確定點B的坐標;因為點P與點B關(guān)于對稱軸對稱,所以確定對稱軸方程,從而求得b、c的值,求得函數(shù)解析式.
解答:解:(1)依題意得:(-1)2+(b-1)(-1)+c=-2b (2分)
∴b+c=-2.(3分)

(2)當b=3時,c=-5,(4分)
∴y=x2+2x-5=(x+1)2-6,
∴拋物線的頂點坐標是(-1,-6).(6分)

(3)當b>3時,拋物線對稱軸x=
∴對稱軸在點P的左側(cè)
因為拋物線是軸對稱圖形,P(-1,-2b)且BP=2PA
∴B(-3,-2b) (9分)
=-2,
∴b=5 (10分)
又b+c=-2,
∴c=-7 (11分)
∴拋物線所對應的二次函數(shù)關(guān)系式為y=x2+4x-7. (12分)
解法2:(3)
當b>3時,-b<-3,1-b<-2,則x=-=<-1,
∴對稱軸在點P的左側(cè),因為拋物線是軸對稱圖形
∵P(-1,-2b),且BP=2PA,
∴B(-3,-2b) (9分)
∴(-3)2-3(b-1)+c=-2b(10分)
又b+c=-2,
解得b=5,c=-7(11分)
這條拋物對應的二次函數(shù)關(guān)系式為y=x2+4x-7.(12分)
解法3:(3)∵b+c=-2,
∴c=-b-2
∴y=x2+(b-1)x-b-2( 7分)
BP∥x軸,
∴x2+(b-1)x-b-2=-2b( 8分)
即x2+(b-1)x+b-2=0
解得:x1=-1,x2=-(b-2),即xB=-(b-2)10分
由BP=2PA,
∴-1+(b-2)=2×1
∴b=5,c=-7  (11分)
∴拋物線所對應的二次函數(shù)關(guān)系式為y=x2+4x-7.(12分)
點評:此題考查了待定系數(shù)法求函數(shù)的解析式,考查了二次函數(shù)的對稱性,解題的關(guān)鍵是要注意數(shù)形結(jié)合思想的應用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2008•廈門)已知:拋物線y=x2+(b-1)x+c經(jīng)過點P(-1,-2b).
(1)求b+c的值;
(2)若b=3,求這條拋物線的頂點坐標;
(3)若b>3,過點P作直線PA⊥y軸,交y軸于點A,交拋物線于另一點B,且BP=2PA,求這條拋物線所對應的二次函數(shù)關(guān)系式.(提示:請畫示意圖思考)

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《反比例函數(shù)》(04)(解析版) 題型:解答題

(2008•廈門)已知一次函數(shù)與反比例函數(shù)的圖象交于點P(-2,1)和Q(1,m)
(Ⅰ)求反比例函數(shù)的關(guān)系式;
(Ⅱ)求Q點的坐標和一次函數(shù)的解析式;
(Ⅲ)在同一直角坐標系中畫出這兩個函數(shù)圖象的示意圖,并觀察圖象回答:當x為何值時,一次函數(shù)的值大于反比例函數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年天津市東麗區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2008•廈門)已知一次函數(shù)與反比例函數(shù)的圖象交于點P(-2,1)和Q(1,m)
(Ⅰ)求反比例函數(shù)的關(guān)系式;
(Ⅱ)求Q點的坐標和一次函數(shù)的解析式;
(Ⅲ)在同一直角坐標系中畫出這兩個函數(shù)圖象的示意圖,并觀察圖象回答:當x為何值時,一次函數(shù)的值大于反比例函數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年福建省廈門市中考數(shù)學試卷(解析版) 題型:解答題

(2008•廈門)已知:拋物線y=x2+(b-1)x+c經(jīng)過點P(-1,-2b).
(1)求b+c的值;
(2)若b=3,求這條拋物線的頂點坐標;
(3)若b>3,過點P作直線PA⊥y軸,交y軸于點A,交拋物線于另一點B,且BP=2PA,求這條拋物線所對應的二次函數(shù)關(guān)系式.(提示:請畫示意圖思考)

查看答案和解析>>

同步練習冊答案