(2008•莆田)如圖:拋物線經(jīng)過(guò)A(-3,0)、B(0,4)、C(4,0)三點(diǎn).
(1)求拋物線的解析式.
(2)已知AD=AB(D在線段AC上),有一動(dòng)點(diǎn)P從點(diǎn)A沿線段AC以每秒1個(gè)單位長(zhǎng)度的速度移動(dòng);同時(shí)另一個(gè)動(dòng)點(diǎn)Q以某一速度從點(diǎn)B沿線段BC移動(dòng),經(jīng)過(guò)t秒的移動(dòng),線段PQ被BD垂直平分,求t的值;
(3)在(2)的情況下,拋物線的對(duì)稱(chēng)軸上是否存在一點(diǎn)M,使MQ+MC有最小值?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(注:拋物線y=ax2+bx+c的對(duì)稱(chēng)軸為x=-

【答案】分析:(1)因?yàn)閽佄锞經(jīng)過(guò)的三點(diǎn)為與兩坐標(biāo)軸的交點(diǎn),故有兩種方法(1)用一般式解答,(2)用交點(diǎn)式(兩點(diǎn)式)解答;
(2)找到變化過(guò)程中的不變關(guān)系:△CDQ∽△CAB,根據(jù)相似三角形的性質(zhì)計(jì)算;
(3)因?yàn)锳、C關(guān)于x=對(duì)稱(chēng),所以MQ+MC的最小值即為MQ+MA的最小值,根據(jù)兩點(diǎn)之間線段最短,A、M、Q共線時(shí)MQ+MC可取最小值.
解答:解:(1)解法一:設(shè)拋物線的解析式為
y=a(x+3)(x-4)
因?yàn)锽(0,4)在拋物線上,
所以4=a(0+3)(0-4)
解得a=-
所以拋物線解析式為
y=-(x+3)(x-4)=-x2+x+4
解法二:設(shè)拋物線的解析式為y=ax2+bx+c(a≠0),
依題意得:c=4且
解得
所以所求的拋物線的解析式為y=-x2+x+4.

(2)連接DQ,在Rt△AOB中,AB===5
所以AD=AB=5,AC=AO+CO=3+4=7,CD=AC-AD=7-5=2
因?yàn)锽D垂直平分PQ,
所以PD=QD,PQ⊥BD,
所以∠PDB=∠QDB
因?yàn)锳D=AB,
所以∠ABD=∠ADB,∠ABD=∠QDB,
所以DQ∥AB
所以∠CQD=∠CBA.∠CDQ=∠CAB,
所以△CDQ∽△CAB,=
=,DQ=
所以AP=AD-DP=AD-DQ=5-=,
t=÷1=,
所以t的值是

(3)答:對(duì)稱(chēng)軸上存在一點(diǎn)M,使MQ+MC的值最小
理由:因?yàn)閽佄锞的對(duì)稱(chēng)軸為x=-=
所以A(-3,0),C(4,0)兩點(diǎn)關(guān)于直線x=對(duì)稱(chēng)
連接AQ交直線x=于點(diǎn)M,則MQ+MC的值最小
∵過(guò)點(diǎn)Q作QE⊥x軸于E,
∴∠QED=∠BOA=90度
DQ∥AB,∠BAO=∠QDE,△DQE∽△ABO,==
==
所以QE=,DE=,
所以O(shè)E=OD+DE=2+=
所以Q(,
設(shè)直線AQ的解析式為y=kx+m(k≠0)

由此得
所以直線AQ的解析式為y=x+
聯(lián)立
由此得
所以M(,
則:在對(duì)稱(chēng)軸上存在點(diǎn)M(,),使MQ+MC的值最。
點(diǎn)評(píng):此題將用待定系數(shù)法求二次函數(shù)解析式、動(dòng)點(diǎn)問(wèn)題和最小值問(wèn)題相結(jié)合,有較大的思維跳躍,考查了同學(xué)們的應(yīng)變能力和綜合思維能力,是一道好題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省黃岡市數(shù)學(xué)中考精品試卷之四(解析版) 題型:解答題

(2008•莆田)如圖:拋物線經(jīng)過(guò)A(-3,0)、B(0,4)、C(4,0)三點(diǎn).
(1)求拋物線的解析式.
(2)已知AD=AB(D在線段AC上),有一動(dòng)點(diǎn)P從點(diǎn)A沿線段AC以每秒1個(gè)單位長(zhǎng)度的速度移動(dòng);同時(shí)另一個(gè)動(dòng)點(diǎn)Q以某一速度從點(diǎn)B沿線段BC移動(dòng),經(jīng)過(guò)t秒的移動(dòng),線段PQ被BD垂直平分,求t的值;
(3)在(2)的情況下,拋物線的對(duì)稱(chēng)軸上是否存在一點(diǎn)M,使MQ+MC有最小值?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(注:拋物線y=ax2+bx+c的對(duì)稱(chēng)軸為x=-

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年湖北省黃石市陽(yáng)新縣太子中學(xué)中考模擬數(shù)學(xué)試卷(3)(解析版) 題型:解答題

(2008•莆田)如圖:拋物線經(jīng)過(guò)A(-3,0)、B(0,4)、C(4,0)三點(diǎn).
(1)求拋物線的解析式.
(2)已知AD=AB(D在線段AC上),有一動(dòng)點(diǎn)P從點(diǎn)A沿線段AC以每秒1個(gè)單位長(zhǎng)度的速度移動(dòng);同時(shí)另一個(gè)動(dòng)點(diǎn)Q以某一速度從點(diǎn)B沿線段BC移動(dòng),經(jīng)過(guò)t秒的移動(dòng),線段PQ被BD垂直平分,求t的值;
(3)在(2)的情況下,拋物線的對(duì)稱(chēng)軸上是否存在一點(diǎn)M,使MQ+MC有最小值?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(注:拋物線y=ax2+bx+c的對(duì)稱(chēng)軸為x=-

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年廣東省湛江市中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2008•莆田)如圖:拋物線經(jīng)過(guò)A(-3,0)、B(0,4)、C(4,0)三點(diǎn).
(1)求拋物線的解析式.
(2)已知AD=AB(D在線段AC上),有一動(dòng)點(diǎn)P從點(diǎn)A沿線段AC以每秒1個(gè)單位長(zhǎng)度的速度移動(dòng);同時(shí)另一個(gè)動(dòng)點(diǎn)Q以某一速度從點(diǎn)B沿線段BC移動(dòng),經(jīng)過(guò)t秒的移動(dòng),線段PQ被BD垂直平分,求t的值;
(3)在(2)的情況下,拋物線的對(duì)稱(chēng)軸上是否存在一點(diǎn)M,使MQ+MC有最小值?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(注:拋物線y=ax2+bx+c的對(duì)稱(chēng)軸為x=-

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年福建省莆田市中考數(shù)學(xué)試卷(網(wǎng)絡(luò)卷)(解析版) 題型:解答題

(2008•莆田)如圖:拋物線經(jīng)過(guò)A(-3,0)、B(0,4)、C(4,0)三點(diǎn).
(1)求拋物線的解析式.
(2)已知AD=AB(D在線段AC上),有一動(dòng)點(diǎn)P從點(diǎn)A沿線段AC以每秒1個(gè)單位長(zhǎng)度的速度移動(dòng);同時(shí)另一個(gè)動(dòng)點(diǎn)Q以某一速度從點(diǎn)B沿線段BC移動(dòng),經(jīng)過(guò)t秒的移動(dòng),線段PQ被BD垂直平分,求t的值;
(3)在(2)的情況下,拋物線的對(duì)稱(chēng)軸上是否存在一點(diǎn)M,使MQ+MC有最小值?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(注:拋物線y=ax2+bx+c的對(duì)稱(chēng)軸為x=-

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年福建省莆田市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•莆田)如圖,拋物線c1:y=x2-2x-3與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.點(diǎn)P為線段BC上一點(diǎn),過(guò)點(diǎn)P作直線l⊥x軸于點(diǎn)F,交拋物線c1點(diǎn)E.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)當(dāng)點(diǎn)P在線段BC上運(yùn)動(dòng)時(shí),求線段PE長(zhǎng)的最大值;
(3)當(dāng)PE為最大值時(shí),把拋物線c1向右平移得到拋物線c2,拋物線c2與線段BE交于點(diǎn)M,若直線CM把△BCE的面積分為1:2兩部分,則拋物線c1應(yīng)向右平移幾個(gè)單位長(zhǎng)度可得到拋物線c2?

查看答案和解析>>

同步練習(xí)冊(cè)答案