【題目】如圖,河流兩岸PQ,MN互相平行,C、D是河岸PQ上間隔50m的兩個電線桿,某人在河岸MN上的A處測得∠DAB=30°,然后沿河岸走了100m到達B處,測得∠CBF=70°,求河流的寬度(結(jié)果精確到個位,=1.73,sin70°=0.94,cos70°=0.34,tan70°=2.75)
【答案】河流的寬度CF的值約為37m.
【解析】
過點C作CE∥AD,交AB于點E,則四邊形AECD是平行四邊形,利用平行四邊形的性質(zhì)可得出AE、EB及∠CEF的值,通過解直角三角形可得出EF,BF的長,結(jié)合EF﹣BF=50m,即可求出CF的長.
如圖,過點C作CE∥AD,交AB于點E,
∵CD∥AE,CE∥AD,
∴四邊形AECD是平行四邊形,
∵CD=50m,AB=100m,
∴AE=CD=50m,EB=AB﹣AE=50m,∠CEF=∠DAB=30°.
在Rt△ECF中,EF==CF,
∵∠CBF=70°,
∴在Rt△BCF中,BF=,
∵EF﹣BF=50m,
∴CF﹣=50,
∴CF≈37m.
答:河流的寬度CF的值約為37m.
科目:初中數(shù)學 來源: 題型:
【題目】某中學開展了“手機伴我健康行”主題活動.他們隨機抽取部分學生進行“手機使用目的”和“每周使用手機時間”的問卷調(diào)查,并繪制成如圖①②的統(tǒng)計圖。已知“查資料”人人數(shù)是40人。
請你根據(jù)以上信息解答以下問題
(1)在扇形統(tǒng)計圖中,“玩游戲”對應的圓心角度數(shù)是_______________。
(2)補全條形統(tǒng)計圖
(3)該校共有學生1200人,估計每周使用手機時間在2小時以上(不含2小時)的人數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,點E,F是對角線BD上的兩點,且BE=DF.
(1)如果四邊形AECF是平行四邊形,求證:四邊形ABCD也是平行四邊形;
(2)如果四邊形AECF是菱形,求證:四邊形ABCD也是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=30°,點D是斜邊AB的中點,點G是Rt△ABC的重心,GE⊥AC于點E.若BC=6cm,則GE=__cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=kx(k>0)與雙曲線y=交于A、B兩點,BC⊥x軸于C,連接AC交y軸于D,下列結(jié)論:①A、B關于原點對稱;②△ABC的面積為定值;③D是AC的中點;④S△AOD=.其中正確結(jié)論的個數(shù)為( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,先將正方形紙片兒對折,折痕為MN,再把點B折疊在折痕MN上,折痕為AE,點E在CB上,點B在MN上的對應點為H,沿AH和DH剪下得到三角形ADH,則下列選項錯誤的是( )
A. DH=AD B. AH=DH C. NE=BE D. DM=DH
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點,在軸上任取一點,連接,作的垂直平分線,過點作軸的垂線,與交于點.設點的坐標為.
(Ⅰ)當的坐標取時,點的坐標為________;
(Ⅱ)求,滿足的關系式;
(Ⅲ)是否存在點,使得恰為等邊三角形?若存在,求點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:
(1)甲登山上升的速度是每分鐘 米,乙在A地時距地面的高度b為 米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關系式;
(3)登山多長時間時,甲、乙兩人距地面的高度差為70米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com