【題目】如圖,河流兩岸PQMN互相平行,C、D是河岸PQ上間隔50m的兩個電線桿,某人在河岸MN上的A處測得∠DAB30°,然后沿河岸走了100m到達B處,測得∠CBF70°,求河流的寬度(結(jié)果精確到個位,1.73,sin70°0.94cos70°0.34,tan70°2.75

【答案】河流的寬度CF的值約為37m

【解析】

過點CCEAD,交AB于點E,則四邊形AECD是平行四邊形,利用平行四邊形的性質(zhì)可得出AEEB及∠CEF的值,通過解直角三角形可得出EF,BF的長,結(jié)合EFBF50m,即可求出CF的長.

如圖,過點CCEAD,交AB于點E,

CDAE,CEAD

∴四邊形AECD是平行四邊形,

CD=50m,AB=100m,

AECD50m,EBABAE50m,∠CEF=∠DAB30°

RtECF中,EFCF,

∵∠CBF=70°

∴在RtBCF中,BF,

EFBF50m,

CF50

CF≈37m

答:河流的寬度CF的值約為37m

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某中學開展了手機伴我健康行主題活動.他們隨機抽取部分學生進行手機使用目的每周使用手機時間的問卷調(diào)查,并繪制成如圖的統(tǒng)計圖。已知查資料人人數(shù)是40人。

請你根據(jù)以上信息解答以下問題

1)在扇形統(tǒng)計圖中,玩游戲對應的圓心角度數(shù)是_______________。

2)補全條形統(tǒng)計圖

3)該校共有學生1200人,估計每周使用手機時間在2小時以上(不含2小時)的人數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,點E,F是對角線BD上的兩點,且BEDF

1)如果四邊形AECF是平行四邊形,求證:四邊形ABCD也是平行四邊形;

2)如果四邊形AECF是菱形,求證:四邊形ABCD也是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠A30°,點D是斜邊AB的中點,點GRtABC的重心,GEAC于點E.若BC6cm,則GE__cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=kxk0)與雙曲線y=交于A、B兩點,BC⊥x軸于C,連接ACy軸于D,下列結(jié)論:①A、B關于原點對稱;②△ABC的面積為定值;③DAC的中點;④SAOD=.其中正確結(jié)論的個數(shù)為( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,先將正方形紙片兒對折,折痕為MN,再把點B折疊在折痕MN上,折痕為AE,點ECB上,點BMN上的對應點為H,沿AHDH剪下得到三角形ADH,則下列選項錯誤的是(  )

A. DH=AD B. AH=DH C. NE=BE D. DM=DH

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點,在軸上任取一點,連接,作的垂直平分線,過點軸的垂線,交于點.設點的坐標為

(Ⅰ)當的坐標取時,點的坐標為________;

(Ⅱ)求,滿足的關系式;

(Ⅲ)是否存在點,使得恰為等邊三角形?若存在,求點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:

1)甲登山上升的速度是每分鐘   米,乙在A地時距地面的高度b   米;

2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關系式;

3)登山多長時間時,甲、乙兩人距地面的高度差為70米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在等邊中,點在邊上,以為半徑的于點,過點于點

1)如圖1,求證:的切線;

2)如圖2,連接于點,若中點,求的值.

查看答案和解析>>

同步練習冊答案