【題目】如圖,在RtABC中,∠A30°,點D是斜邊AB的中點,點GRtABC的重心,GEAC于點E.若BC6cm,則GE__cm

【答案】2

【解析】

根據(jù)在直角三角形中,30°所對的直角邊是斜邊的一半得到AB2BC12cm,根據(jù)直角三角形斜邊上的中線是斜邊的一半CDAB6cm,根據(jù)重心的性質(zhì)得到CGCD4cm,根據(jù)30°所對的直角邊是斜邊的一半得到答案.

解:在Rt△ABC中,A30°,

AB2BC12cm

Rt△ABC中,點D是斜邊AB的中點,

CDAB6cm

GRt△ABC的重心,

CGCD4cm,

CDAD

∴∠DCAA30°,

GECG2cm,

故答案為:2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級數(shù)學興趣小組在探究相似多邊形問題時,他們提出了下面兩個觀點:

觀點一:將外面大三角形按圖1的方式向內(nèi)縮小,得到新三角形,它們對應(yīng)的邊間距都為,則新三角形與原三角形相似.

觀點二:將鄰邊為的矩形按圖2方式向內(nèi)縮小,得到新的矩形,它們對應(yīng)的邊間距都為,則新矩形與原矩形相似.

請回答下列問題:

1)你認為上述兩個觀點是否正確?請說明理由.

2)如圖3,已知,,,將按圖3的方式向外擴張,得到,它們對應(yīng)的邊間距都為,求的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知平行四邊形ABCD,連接AFCE、AF平分BC于點F,CE平分AD于點E

1)如圖1,求證:四邊形AFCE為平行四邊形;

2)如圖2,連接BD,分別交AF、CEG、H,若,在不添加其他輔助線的情況下,直接找出圖中面積為平行四邊形ABCD面積的的三角形或四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了參加學校舉行的傳統(tǒng)文化知識競賽,某班進行了四次模擬訓練,將成績優(yōu)秀的人數(shù)和優(yōu)秀率繪制成如下兩個不完整的統(tǒng)計圖:

(1)該班總?cè)藬?shù)是 ;

(2)根據(jù)計算,請你補全兩個統(tǒng)計圖;

(3)觀察補全后的統(tǒng)計圖,寫出一條你發(fā)現(xiàn)的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在RtABC中,∠C90°,AD是∠BAC的角平分線,以AB上一點O為圓心,AD為弦作⊙O

1)用直尺和圓規(guī)在圖中作出⊙O(不寫作法,保留作圖痕跡),判斷直線BC與⊙O的位置關(guān)系,并說明理由;(友情提醒:必須作在答題卷上哦。

2)若AC3BC4,求⊙O的半徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是一塊含30°(即∠CAB30°)角的三角板和一個量角器拼在一起,三角板斜邊AB與量角器所在圓的直徑MN恰好重合,其量角器最外緣的讀數(shù)是從N點開始(即N點的讀數(shù)為0°),現(xiàn)有射線CP繞點CCA的位置開始按順時針方向以每秒2度的速度旋轉(zhuǎn)到CB位置,在旋轉(zhuǎn)過程中,射線CP與量角器的半圓弧交于E

1)當旋轉(zhuǎn)7.5秒時,連接BE,試說明:BECE;

2)填空:①當射線CP經(jīng)過ABC的外心時,點E處的讀數(shù)是   

②當射線CP經(jīng)過ABC的內(nèi)心時,點E處的讀數(shù)是   ;

③設(shè)旋轉(zhuǎn)x秒后,E點出的讀數(shù)為y度,則yx的函數(shù)式是y   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,河流兩岸PQ,MN互相平行,C、D是河岸PQ上間隔50m的兩個電線桿,某人在河岸MN上的A處測得∠DAB30°,然后沿河岸走了100m到達B處,測得∠CBF70°,求河流的寬度(結(jié)果精確到個位,1.73,sin70°0.94,cos70°0.34tan70°2.75

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCBED都是等腰直角三角形,∠ABC=DBE=90°,AD,CE相交于點G

1)求證:ABD≌△CBE;

2)求證:ADCE

3)連接AE,CD,若AE=CD=5,求ABCBED的面積之和.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)計算(﹣23++|1|04sin60°

2)化簡代數(shù)式,再從﹣2≤a≤2中選一個恰當?shù)恼麛?shù)作為a的值,代入求值.

查看答案和解析>>

同步練習冊答案