將一塊直角三角板DEF放置在△ABC上,使得該三角板的兩條直角邊DE、DF恰好分別經(jīng)過點B、C.
(1)如圖1,當∠A=45°時,∠ABC+∠ACB=
135
135
度,∠DBC+∠DCB=
90
90
度;
(2)如圖2,改變直角三角板DEF的位置,使該三角板的兩條直角邊DE、DF仍然分別經(jīng)過點B、C,那么∠ABD+∠ACD的大小是否發(fā)生變化?若變化,請舉例說明;若沒有變化,請?zhí)骄俊螦BD+∠ACD與∠A的關系.
分析:(1)根據(jù)三角形內角和定理∴∠ABC+∠ACB=180°-∠A=135°,∠DBC+∠DCB=180°-∠DBC=90°;
(2)根據(jù)三角形內角和定義有90°+(∠ABD+∠ACD)+∠A=180°,則∠ABD+∠ACD=90°-∠A.
解答:解:(1)在△ABC中,∵∠A=45°,
∴∠ABC+∠ACB=180°-45°=135°,
在△DBC中,∵∠DBC=90°,
∴∠DBC+∠DCB=180°-90°=90°;

(2)不變.理由如下:
∵90°+(∠ABD+∠ACD)+∠A=180°,
∴(∠ABD+∠ACD)+∠A=90°,
∴∠ABD+∠ACD=90°-∠A.
故答案135,90.
點評:本題考查了三角形內角和定理:三角形內角和為180°.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•寧德)某數(shù)學興趣小組開展了一次活動,過程如下:
如圖1,在等腰直角△ABC中,AB=AC,∠BAC=90°,小敏將一塊三角板中含45°角的頂點放在A上,從AB邊開始繞點A逆時針旋轉一個角α,其中三角板斜邊所在的直線交直線BC于點D,直角邊所在的直線交直線BC于點E.
(1)小敏在線段BC上取一點M,連接AM,旋轉中發(fā)現(xiàn):若AD平分∠BAM,則AE也平分∠MAC.請你證明小敏發(fā)現(xiàn)的結論;
(2)當0°<α≤45°時,小敏在旋轉中還發(fā)現(xiàn)線段BD、CE、DE之間存在如下等量關系:BD2+CE2=DE2
同組的小穎和小亮隨后想出了兩種不同的方法進行解決;小穎的想法:將△ABD沿AD所在的直線對折得到△ADF,連接EF(如圖2)
小亮的想法:將△ABD繞點A順時針旋轉90°得到△ACG,連接EG(如圖3);
小敏繼續(xù)旋轉三角板,在探究中得出當45°<α<135°且α≠90°時,等量關系BD2+CE2=DE2仍然成立,先請你繼續(xù)研究:當135°<α<180°時(如圖4)等量關系BD2+CE2=DE2是否仍然成立?若成立,給出證明;若不成立,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•鷹潭模擬)某校九年級(1)班數(shù)學興趣小組開展了一次活動,過程如下:
如圖1,在等腰直角△ABC中,AB=AC,∠BAC=90°,小明將一塊直角三角板的直角頂點放在斜邊BC邊的中點O上,從BC邊開始繞點A順時針旋轉,其中三角板兩條直角邊所在的直線分別交AB、AC于點E、F.
(1)小明在旋轉中發(fā)現(xiàn):在圖1中,線段AE與CF相等.請你證明小明發(fā)現(xiàn)的結論;
(2)小明將一塊三角板中含45°角的頂點放在點A上,從BC邊開始繞點A順時針旋轉一個角α,其中三角板斜邊所在的直線交直線BC于點D,直角邊所在的直線交直線BC于點E.當0°<α≤45°時,小明在旋轉中還發(fā)現(xiàn)線段BD、CE、DE之間存在如下等量關系:
BD2+CE2=DE2.同組的小穎和小亮隨后想出了兩種不同的方法進行解決:
小穎的方法:將△ABD沿AD所在的直線對折得到△ADF,連接EF(如圖2);
小亮的方法:將△ABD繞點A逆時針旋轉90°得到△ACG,連接EG(如圖3).
請你從中任選一種方法進行證明;
(3)小明繼續(xù)旋轉三角板,在探究中得出:當45°<α<135°且α≠90°時,等量關系BD2+CE2=DE2仍然成立.現(xiàn)請你繼續(xù)探究:當135°<α<180°時(如圖4),等量關系BD2+CE2=DE2是否仍然成立?若成立,給出證明;若不成立,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:江蘇省靖江市實驗學校2011-2012學年七年級下學期期中考試數(shù)學試題 題型:044

實驗探究:

(1)動手操作:

①如圖1,將一塊直角三角板DEF放置在直角三角板ABC上,使三角板DEF的兩條直角邊DE、DF分別經(jīng)過點B、C,且BC∥EF,已知∠A=30°,則∠ABD+∠ACD=________°;

②如圖2,若直角三角板ABC不動,改變等腰直角三角板DEF的位置,使三角板DEF的兩條直角邊DE、DF仍然分別經(jīng)過點B、C,已知∠A=30°,那么∠ABD+∠ACD=________°;

(2)猜想證明:

如圖3,∠BDC與∠A、∠B、∠C之間存在著什么關系,并說明理由;

(3)靈活應用:

請你直接利用以上結論,解決以下列問題:

①如圖4,BE平分∠ABD,CE平分∠ACD,若∠BAC=40°,∠BDC=120°,求∠BEC的度數(shù);

②如圖5,∠ABD、∠ACD的10等分線相交于點F1、F2、…、F9,若∠BDC=120°,∠BF3C=64°,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

將一塊直角三角板DEF放置在△ABC上,使得該三角板的兩條直角邊DE、DF恰好分別經(jīng)過點B、C.
(1)如圖1,當∠A=45°時,∠ABC+∠ACB=______度,∠DBC+∠DCB=______度;
(2)如圖2,改變直角三角板DEF的位置,使該三角板的兩條直角邊DE、DF仍然分別經(jīng)過點B、C,那么∠ABD+∠ACD的大小是否發(fā)生變化?若變化,請舉例說明;若沒有變化,請?zhí)骄俊螦BD+∠ACD與∠A的關系.

查看答案和解析>>

同步練習冊答案