【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點G,過點G作EF∥BC交AB于E,交AC于F,過點G作GD⊥AC于D,下列四個結論:① EF=BE+CF;②∠BGC=90°+∠A;③點G到△ABC各邊的距離相等;④設GD=m,AE+AF=n,則=mn. 其中正確的結論有( )
A. 1個 B. 2個 C. 3個 D. 4個
【答案】C
【解析】
①根據(jù)∠ABC和∠ACB的平分線相交于點G可得出∠EBG=∠CBG,∠BCG=∠FCG,再由EF∥BC可知∠CBG=∠EGB,∠BCG=∠CGF,故可得出BE=EG,GF=CF,由此可得出結論;
②先根據(jù)角平分線的性質得出∠GBC+∠GCB=(∠ABC+∠ACB),再由三角形內角和定理即可得出結論;
③根據(jù)三角形內心的性質即可得出結論;
④連接AG,根據(jù)三角形的面積公式即可得出結論.
解:①∵∠ABC和∠ACB的平分線相交于點G,
∴∠EBG=∠CBG,∠BCG=∠FCG.
∵EF∥BC,
∴∠CBG=∠EGB,∠BCG=∠CGF,
∴∠EBG=∠EGB,∠FCG=∠CGF,
∴BE=EG,GF=CF,
∴EF=EG+GF=BE+CF,故本小題正確;
②∵∠ABC和∠ACB的平分線相交于點G,
∴∠GBC+∠GCB=(∠ABC+∠ACB)=(180°-∠A),
∴∠BGC=180°-(∠GBC+∠GCB)=180°-(180°-∠A)=90°+∠A,故本小題正確;
③∵∠ABC和∠ACB的平分線相交于點G,
∴點G是△ABC的內心,
∴點G到△ABC各邊的距離相等,故本小題正確;
④連接AG,
∵點G是△ABC的內心,GD=m,AE+AF=n,
∴S△AEF=AEGD+AFGD=(AE+AF)GD=nm,故本小題錯誤.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC和∠ABC的平分線相交于點O,過點O作EF∥AB交BC于F,交AC于E,過點O作OD⊥BC于D,下列四個結論:
①∠AOB=90°+∠C;②AE+BF=EF;③當∠C=90°時,E,F分別是AC,BC的中點;④若OD=a,CE+CF=2b,則S△CEF=ab.其中正確的是( 。
A. ①② B. ③④ C. ①②④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為10厘米,點E在邊AB上,且AE=4厘米,如果點P在線段BC上以2厘米/秒的速度由B點向C點運動,同時,點Q在線段CD上由C點向D點運動.設運動時間為t秒.
(1)若點Q的運動速度與點P的運動速度相等,經(jīng)過2秒后,△BPE與△CQP是否全等?請說明理由;
(2)若點Q的運動速度與點P的運動速度不相等,則當t為何值時,能夠使△BPE與△CQP全等;此時點Q的運動速度為多少.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC 中,AB=AC=6cm,∠B=∠C,BC=4cm,點 D 為 AB的中點.
(1)如果點 P 在線段 BC 上以 1cm/s 的速度由點 B 向點 C 運動,同時,點 Q 在線段 CA 上由點 C 向點 A 運動.
①若點 Q 的運動速度與點 P 的運動速度相等,經(jīng)過 1 秒后,△BPD 與△CQP 是否全等,請說明理由;
②若點 Q 的運動速度與點 P 的運動速度不相等,當點 Q 的運動速度為多少時,能夠使△BPD 與△CQP 全等?
(2)若點 Q 以②中的運動速度從點 C 出發(fā),點 P 以原來的運動速度從點 B 同時出發(fā),都逆時針沿△ABC 三邊運動,則經(jīng)過 后,點 P 與點 Q 第一次在△ABC 的 邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】感知:如圖1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC.
探究:如圖2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求證:DB=DC.
應用:如圖3,四邊形ABCD中,∠B=45°,∠C=135°,DB=DC=a,則AB﹣AC= (用含a的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知 中, 厘米,, 厘米,點 為 的中點.如果點 在線段 上以 厘米/秒的速度由 點向 點運動.同時,點 在線段 上由 點以 厘米/秒的速度向 點運動.設運動的時間為 秒.
(1)直接寫出:
①BD=_______厘米; ②BP=________厘米;
③CP=_______厘米; ④CQ=_______厘米;
(可用含 、a的代數(shù)式表示)
(2)若以 ,, 為頂點的三角形和以 ,, 為頂點的三角形全等,試求 、t的值;
(3)若點 以()中的運動速度從點 出發(fā),點 以原來的運動速度從點 同時出發(fā),都逆時針沿 三邊運動.設運動的時間為 秒;直接寫出t= 秒時點 與點 第一次相遇.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,補充條件后仍不一定能保證△ABC≌△A′B′C′,則補充的這個條件是( )
A. BC=B′C′ B. ∠A=∠A′ C. AC=A′C′ D. ∠C=∠C′
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com