如圖1,在ABCD中,AEBCE,E恰為BC的中點,AD=AE.
【小題1】(1)如圖2,點P在線段BE上,作EFDP于點F,連結(jié)AF.
求證:;
【小題2】(2)請你在圖3中畫圖探究:當(dāng)P為射線EC上任意一點(P不與點E重合)時,作EFDP于點F,連結(jié)AF,線段DF、EFAF之間有怎樣的數(shù)量關(guān)系?直接寫出你的結(jié)論.

【小題1】(1)證明:∵在ABCD中,ADBC, AEBCE
AEADA,∠FPE=∠ADP
AD=AE,∠EAD=90°
∴將△AEF繞點A逆時針旋轉(zhuǎn)90°得到△ADG
∴△AEF≌△ADG,∠FAG="90°           " -------------1分
AG=AF,∠ADG=∠AEF
EFPD,AEBC
∴∠AEF+∠PEF=90°,∠FPE+∠PEF=90°
∴∠AEF=∠FPE
∵∠ADG=∠AEF,∠FPE=∠ADP
∴∠ADG=∠ADP
∴點GPD上              ----------------------2分
AF=AG,∠FAG=90°
             ----------------------3分
FG=DF-DG=DF-EF
      ------------------------4分
【小題2】(2)  (兩個圖各1分,結(jié)論1分)
解析:
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在?ABCD中,AO⊥BC,垂足為O,已知∠ABC=60°,BO=2,AO=2
3

(1)求線段AB的長;
(2)如圖2,點E為線段AB的中點,過點E的直線FG與CB的延長線交于點F,與射線AD交于點G,連接OE,以O(shè)E所在直線為對稱軸,△OEF經(jīng)軸對稱變換后得到△OEF′,記直線EF′與射線AD的交點為H.
①當(dāng)點G在點H的左側(cè)時,求證:△AEG∽△AHE;
②若HG=6,求AG的長.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

探究規(guī)律:
已知,如圖1,直線m∥n,A、B為直線n上的兩點,C、P為直線m上的兩點.若A、B、C為三個定點,P為動點,則
(1)△PAB與△CAB的面積大小關(guān)系為
 
;
(2)請你在圖1中再畫出一個與△ABC面積相等的△DEF,并說明面積相等的理由.
解決問題:
問題1:如圖2,在?ABCD中,點P是CD上任意一點,
則S△PAB
 
S△ADP+S△BCP(填寫“>”、“<”或“=”).
問題2:如圖3,在公路旁邊,有一塊矩形的土地ABCD,其內(nèi)部有一個底面為圓形的建筑物,點O為圓心.若要將土地(不含圓形建筑物所占的面積)平均分給兩家承包,且分割線都過公路邊(AB)上一點P,請你確定點P的位置,并畫出分割線,說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖1,矩形ABCD中,BC=2AB,M為AD的中點,連接BM.
(1)請你判斷并寫出∠BMD是∠ABM的幾倍;
(2)如圖2,在?ABCD中,BC=2AB,M為AD的中點,CE⊥AB,連接EM、CM,請問:∠AEM與∠DME是否也具有(1)中的倍數(shù)關(guān)系?若有,請證明;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•槐蔭區(qū)一模)(1)已知:如圖1,點A、C、D、B在同一條直線上,AC=BD,AE=BF,∠A=∠B.求證:∠E=∠F.

(2)已知:如圖2,在?ABCD中,AE平分∠DAB,交CD于點E.求證:DA=DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在?ABCD中,AE⊥BC于E,E恰為BC的中點,AD=AE.
(1)如圖2,點P在線段BE上,作EF⊥DP于點F,連接AF.求證:DF-EF=
2
AF;
(2)請你在圖3中畫圖探究:當(dāng)P為射線EC上任意一點(P不與點E重合)時,作EF⊥DP于點F,連接AF,線段DF、EF與AF之間有怎樣的數(shù)量關(guān)系?直接寫出你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案