如圖,,的兩條直徑.求證:四邊形為矩形.

 

 

 

【答案】

見解析

【解析】本題考查了矩形的判定

在圓中,圓的半徑處處相等,所以,所以AB,CD相互平分且相等,問題得證.

,,

四邊形為平行四邊形.

,

為矩形.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源:學習周報 數(shù)學 滬科九年級版 2009-2010學年 第24期 總第180期 滬科版 題型:044

我們所學的幾何知識可以理解為對“構圖”的研究:根據(jù)給定的(或構造的)幾何圖形提出相關的概念和問題(或者根據(jù)問題構造圖形),并加以研究.

例如:在平面上根據(jù)兩條直線的各種構圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質”等問題(包括研究的思想和方法)

請你用上面的思想和方法對下面關于圓的問題進行研究:

(1)如圖,在⊙O所在的平面上,放置一條直線m(m和⊙O分別交于點A、B),根據(jù)這個圖形可以提出的概念或問題有哪些(直接寫出兩個即可)?

(2)如圖,在⊙O所在的平面上,請你放置與⊙O都相交且不同時經過圓心的兩條直線mn(m與⊙O分別交于點A、B,n與⊙O分別交于點C、D).請你根據(jù)所構造的圖形提出一個結論,并證明.

(3)如圖,AB是⊙O的直徑,AC是弦,D的中點,弦DEAB于點F.請找出點C和點E重合的條件,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:廣東省中考真題 題型:解答題

我們所學的幾何知識可以理解為對“構圖”的研究:根據(jù)給定的(或構造的)幾何圖形提出相關的概念和問題(或者根據(jù)問題構造圖形),并加以研究。
例如:在平面上根據(jù)兩條直線的各種構圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質”等問題(包括研究的思想和方法)。
請你用上面的思想和方法對下面關于圓的問題進行研究:
(1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點A、B),根據(jù)這個圖形可以提出的概念或問題有哪些?(直接寫出兩個即可)
(2)如圖2,在圓O所在平面上,請你放置與圓O都相交且不同時經過圓心的兩條直線m和n(m與圓O分別交于點A、B,n與圓O分別交于點C、D),請你根據(jù)所構造的圖形提出一個結論,并證明之;
(3)如圖3,其中AB是圓O的直徑,AC是弦,D是的中點,弦DE⊥AB于點F,請找出點C和點E重合的條件,并說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源:第3章《圓》中考題集(22):3.1 圓(解析版) 題型:解答題

我們所學的幾何知識可以理解為對“構圖”的研究:根據(jù)給定的(或構造的)幾何圖形提出相關的概念和問題(或者根據(jù)問題構造圖形),并加以研究.
例如:在平面上根據(jù)兩條直線的各種構圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質”等問題(包括研究的思想和方法).
請你用上面的思想和方法對下面關于圓的問題進行研究:
(1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點A、B),根據(jù)這個圖形可以提出的概念或問題有哪些?(直接寫出兩個即可)
(2)如圖2,在圓O所在平面上,請你放置與圓O都相交且不同時經過圓心的兩條直線m和n(m與圓O分別交于點A、B,n與圓O分別交于點C、D).請你根據(jù)所構造的圖形提出一個結論,并證明之;
(3)如圖3,其中AB是圓O的直徑,AC是弦,D是的中點,弦DE⊥AB于點F.請找出點C和點E重合的條件,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,的直徑,的兩條弦,且.如果,則的度數(shù)是(   。

A.    。拢    C.     D.

 


查看答案和解析>>

同步練習冊答案