【題目】一般情況下不成立,但有些數(shù)對可以使得它成立,例如:ab0.我們稱使得成立的一對數(shù)ab為“相伴數(shù)對”,記為(a,b)

1)若(1,k)是“相伴數(shù)對”,求k的值;

2)直接寫出一個“相伴數(shù)對”(a0,b0),其中a0≠0,且a0≠1;

3)若(m,n)相伴數(shù)對,求的值.

【答案】1;(2 (答案不唯一) ;(3)-2

【解析】

1)根據(jù)相伴數(shù)對的定義列方程求解即可;

2)根據(jù)相伴數(shù)對的定義舉例即可;

3)利用題中的新定義求出mn的關(guān)系,然后將所給代數(shù)式化簡后代入計算即可求出值.

1)根據(jù)題中的新定義得

去分母得15+10k6+6k,

解得

2)∵,,

=,

一個相伴數(shù)對”(答案不唯一) ;

3)由題意得.整理得9m+4n0,

∴原式=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司在甲、乙倉庫共存放某種原料450噸,如果運出甲倉庫所存原料的60%,乙倉庫所存原料的40%,那么乙倉庫剩余的原料比甲倉庫剩余的原料多30噸.

(1)求甲、乙兩倉庫各存放原料多少噸?

(2)現(xiàn)公司需將300噸原料運往工廠,從甲、乙兩個倉庫到工廠的運價分別為120/噸和100/噸.經(jīng)協(xié)商,從甲倉庫到工廠的運價可優(yōu)惠a元噸(10≤a≤30),從乙倉庫到工廠的運價不變,設(shè)從甲倉庫運m噸原料到工廠,請求出總運費W關(guān)于m的函數(shù)解析式(不要求寫出m的取值范圍);

(3)在(2)的條件下,請根據(jù)函數(shù)的性質(zhì)說明:隨著m的增大,W的變化情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知下列方程:①;②0.3x1;③;④x24x3;⑤x6;⑥x+2y0.其中一元一次方程的個數(shù)是(  )

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把平面內(nèi)一條數(shù)軸x繞原點O逆時針旋轉(zhuǎn)角θ(0°<θ<90°)得到另一條數(shù)軸y,x軸和y軸構(gòu)成一個平面斜坐標(biāo)系.規(guī)定:過點Py軸的平行線,交x軸于點A,過點Px軸的平行線,交y軸于點B,若點Ax軸上對應(yīng)的實數(shù)為a,點By軸上對應(yīng)的實數(shù)為b,則稱有序?qū)崝?shù)對(a,b)為點P的斜坐標(biāo),在某平面斜坐標(biāo)系中,已知θ=60°,點M′的斜坐標(biāo)為(3,2),點N與點M關(guān)于y軸對稱,則點N的斜坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)y=x的圖象與函數(shù)y=(x>0)的圖象相交于點P(2,m).

(1)求m,k的值;

(2)直線y=4與函數(shù)y=x的圖象相交于點A,與函數(shù)y=(x>0)的圖象相交于點B,求線段AB長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,以頂點A為圓心,適當(dāng)長為半徑畫弧,分別交AC、AB于點M、N,再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,作射線AP交邊BC于點D,若AC24AB30,且216,則ABD的面積是( )

A.105B.120

C.135D.115

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=5cm,BC=12cm.動點PA點出發(fā)沿AC的路徑向終點C運動;動點QB點出發(fā)沿BCA路徑向終點A運動.點P和點Q分別以每秒1cm3cm的運動速度同時開始運動,其中一點到達(dá)終點時另一點也停止運動,在某時刻,分別過點PQPEMNE,QFMNF.則點P運動時間為_____秒時,△PEC與△QFC全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在ABC,ADE中,∠BAC=DAE=90°,AB=AC,AD=AE,點C,D,E三點在同一條直線上,連結(jié)BDBE.以下四個結(jié)論:①BD=CE;BDCE;③∠ACE+DBC=45°;④∠ACE=DBC其中結(jié)論正確的個數(shù)有(

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=CBD.

(1)求證:CD是⊙O的切線;

(2)若BC=6,tanCDA=,求CD的長.

查看答案和解析>>

同步練習(xí)冊答案