如圖,已知直線(xiàn)l1的解析式為y=3x+6,直線(xiàn)l1與x軸,y軸分別相交于A(yíng),B兩點(diǎn),直線(xiàn)l2經(jīng)過(guò)B,C兩點(diǎn),點(diǎn)C的坐標(biāo)為(8,0),又已知點(diǎn)P在x軸上從點(diǎn)A向點(diǎn)C移動(dòng),點(diǎn)Q在直線(xiàn)l2從點(diǎn)C精英家教網(wǎng)向點(diǎn)B移動(dòng).點(diǎn)P,Q同時(shí)出發(fā),且移動(dòng)的速度都為每秒1個(gè)單位長(zhǎng)度,設(shè)移動(dòng)時(shí)間為t秒(1<t<10).
(1)求直線(xiàn)l2的解析式;
(2)設(shè)△PCQ的面積為S,請(qǐng)求出S關(guān)于t的函數(shù)關(guān)系式;
(3)試探究:當(dāng)t為何值時(shí),△PCQ為等腰三角形?
分析:(1)因?yàn)閘1過(guò)點(diǎn)B,所以代入直線(xiàn)l1的解析式求得點(diǎn)B的坐標(biāo),又因?yàn)橹本(xiàn)l2經(jīng)過(guò)B,C兩點(diǎn),所以將點(diǎn)B、C的坐標(biāo)代入直線(xiàn)y=kx+b(k≠0),列方程組即可求得;
(2)過(guò)Q作QD⊥x軸于D,則△CQD∽△CBO,得出
QD
BO
=
QC
BC
,由題意,知OA=2,OB=6,OC=8,BC=
OB2+OC2
=10,得出
QD
6
=
t
10
,故QD=
3
5
t,即可求得函數(shù)解析式;
(3)要想使△PCQ為等腰三角形,需滿(mǎn)足CP=CQ,或QC=QP,或PC=PQ.
解答:解:(1)由題意,知B(0,6),C(8,0),
設(shè)直線(xiàn)l2的解析式為y=kx+b(k≠0),則
8k+b=0
b=6
,
解得k=-
3
4
,b=6,
則l2的解析式為y=-
3
4
x+6;

精英家教網(wǎng)(2)解法一:如圖,過(guò)P作PD⊥l2于D,
∵∠PDC=∠BOC=90°,∠DCP=∠OCB
∴△PDC∽△BOC
PD
BO
=
PC
BC

由題意,知OA=2,OB=6,OC=8
∴BC=
OB2+OC2
=10,PD=10-t
PD
6
=
10-t
10

∴PD=
3
5
(10-t)
∴S△PCQ=
1
2
CQ•PD=
1
2
t•
3
5
(10-t)=-
3
10
t2+3t;

精英家教網(wǎng)解法二:如圖,過(guò)Q作QD⊥x軸于D,
∵∠QDC=∠BOC=90°,∠QCD=∠BCO
∴△CQD∽△CBO
QD
BO
=
QC
BC

由題意,知OA=2,OB=6,OC=8
∴BC=
OB2+OC2
=10
QD
6
=
t
10

∴QD=
3
5
t
∴S△PCQ=
1
2
PC•QD=
1
2
(10-t)•
3
5
t=-
3
10
t2+3t;

(3)∵PC=10-t,CQ=t,
要想使△PCQ為等腰三角形,需滿(mǎn)足CP=CQ,或QC=QP,或PC=PQ,
∴當(dāng)CP=CQ時(shí),由題10-t=t,得t=5(秒);
當(dāng)QC=QP時(shí),
QC
BC
=
1
2
PC
OC
,即
t
10
=
1
2
(10-t)
8
解得t=
50
13
(秒);
當(dāng)PC=PQ時(shí),
1
2
CQ
OC
=
PC
BC
,即
1
2
t
8
=
10-t
10
,解得t=
80
13
(秒);
即t=5或
50
13
80
13
點(diǎn)評(píng):此題考查了一次函數(shù)與三角形的綜合知識(shí),要注意待定系數(shù)法的應(yīng)用,要注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直線(xiàn)L1的解析式為y=1.5x+6,直線(xiàn)L1與x軸、y軸分別相交于A(yíng)、B兩點(diǎn),直線(xiàn)L2經(jīng)過(guò)B、C兩點(diǎn),點(diǎn)C的坐標(biāo)為(8,0),又已知點(diǎn)P在x軸上從點(diǎn)A向點(diǎn)C移動(dòng),點(diǎn)Q在精英家教網(wǎng)直線(xiàn)L2從點(diǎn)C向點(diǎn)B移動(dòng)(一點(diǎn)到達(dá)終點(diǎn),另一點(diǎn)即停止運(yùn)動(dòng)).點(diǎn)P、Q同時(shí)出發(fā),移動(dòng)的速度都為每秒1個(gè)單位長(zhǎng)度,設(shè)移動(dòng)時(shí)間為t秒.
(1)求直線(xiàn)L2的解析式;
(2)設(shè)△PCQ的面積為S,請(qǐng)求出S關(guān)于t的函數(shù)關(guān)系式;
(3)是否存在某一時(shí)刻,當(dāng)過(guò)P、Q兩點(diǎn)的直線(xiàn)平分△OCB的周長(zhǎng)時(shí),△PCQ的面積達(dá)到最大?若存在,求出此時(shí)點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(4)試探究:當(dāng)t為何值時(shí),△PCQ為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直線(xiàn)l1的解析式為y=3x+6,直線(xiàn)l1,與x軸、y軸分別相交于A(yíng),B兩點(diǎn),直線(xiàn)l2經(jīng)過(guò)B,C兩點(diǎn),點(diǎn)C的坐標(biāo)為(8,0).又已知點(diǎn)P在x軸上從點(diǎn)A向點(diǎn)C移動(dòng),點(diǎn)Q在直線(xiàn)l2上從點(diǎn)C向點(diǎn)B移動(dòng),點(diǎn)P,Q同時(shí)出發(fā),且移動(dòng)的速度都為每秒1個(gè)單位長(zhǎng)度,設(shè)移動(dòng)時(shí)間為t s(1<t<10).
(1)求直線(xiàn)l2的解析式;
(2)設(shè)△PCQ的面積為S,請(qǐng)求出S關(guān)于t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直線(xiàn)l1的解析式為y=3x+6,直線(xiàn)l1與x軸、y軸分別相交于A(yíng)、B兩點(diǎn),直線(xiàn)l2經(jīng)過(guò)B、C兩點(diǎn),點(diǎn)C的坐標(biāo)為(8,0),又已知點(diǎn)P在x軸上從點(diǎn)A向點(diǎn)C移動(dòng),點(diǎn)Q在直線(xiàn)l2從點(diǎn)C向點(diǎn)B移動(dòng).點(diǎn)P、Q同時(shí)出發(fā),且移動(dòng)的速度都為每秒1個(gè)單位長(zhǎng)度,設(shè)移動(dòng)時(shí)間為t秒(1<t<10).
(1)求直線(xiàn)l2的解析式;
(2)設(shè)△PCQ的面積為S,請(qǐng)求出S關(guān)于t的函數(shù)關(guān)系式;
(3)對(duì)于(2)中的△PCQ的面積S是否存在最大值?若不存在,請(qǐng)說(shuō)明理由;若存在,求出當(dāng)t為何值時(shí),S有最大值,最大值是多少?
(4)試探究:當(dāng)t 為何值時(shí),△PCQ為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直線(xiàn)l1的解析式為y=3x+6,直線(xiàn)l1與x軸、y軸分別相交于A(yíng)、B兩點(diǎn),直線(xiàn)l2經(jīng)過(guò)B、C兩點(diǎn),點(diǎn)C的坐標(biāo)為(8,0),點(diǎn)D是AC的中點(diǎn),點(diǎn)Q從點(diǎn)C沿△BOC的三邊按逆時(shí)針?lè)较蛞悦棵?個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng)一周,設(shè)移動(dòng)時(shí)間為t秒
(1)求直線(xiàn)l2的解析式;
(2)設(shè)△DCQ的面積為S,請(qǐng)求出S關(guān)于t的函數(shù)關(guān)系式,并寫(xiě)出t的取值范圍;
(3)試探究:點(diǎn)P在x軸上以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)A向點(diǎn)C運(yùn)動(dòng),若點(diǎn)P與點(diǎn)Q同時(shí)出發(fā),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),t為何值時(shí),以點(diǎn)P、Q、C為頂點(diǎn)的三角形與△BOC相似.

查看答案和解析>>

同步練習(xí)冊(cè)答案