【題目】如圖,在△ABC中,AB=5,AC=12,BC=13,△ABD、△ACE、△BCF都是等邊三角形,則四邊形AEFD的面積S=__________.
【答案】30
【解析】∵△ABD,△ACE都是等邊三角形,
∴∠DAB=∠EAC=60°,
∵∠BAC=105°,
∴∠DAE=135°,
∵△ABD和△FBC都是等邊三角形,
∴∠DBF+∠FBA=∠ABC+∠ABF=60°,
∴∠DBF=∠ABC.
在△ABC與△DBF中,
,
∴△ABC≌△DBF(SAS),
∴AC=DF=AE=12,
同理可證△ABC≌△EFC,
∴AB=EF=AD=5,
∴四邊形DAEF是平行四邊形(兩組對邊分別相等的四邊形是平行四邊形).
∴∠FDA=180°∠DAE=30°,
∴SAEFD=AD(DFsin45°)=5×(12×)=30.
即四邊形AEFD的面積是30,
故答案為:30.
點睛:本題綜合考查了勾股定理得逆定理,平行四邊形的判定與性質,全等三角形的判定與性質以及等邊三角形的性質,綜合性比較強,難度較大,有利于培養(yǎng)學生綜合運用知識進行推理和計算的能力.
科目:初中數(shù)學 來源: 題型:
【題目】以下說法中正確的語句共有幾個( ) ①兩點確定一條直線;
②延長直線AB到C;
③延長線段AB到C,使得AC=BC;
④反向延長線段BC到D,使BD=BC;
⑤線段AB與線段BA表示同一條線段;
⑥線段AB是直線AB的一部分.
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線和雙曲線相交于點A(1,2)和點B(n,-1).
(1)求m,k的值;
(2)不等式的解集為 ;
(3)以A、B、O、P為頂點的平行四邊形,頂點P的坐標是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一張紙片的形狀為直角三角形,其中∠C=90°,AC=12cm,BC=16cm,沿直線AD折疊該紙片,使直角邊AC與斜邊上的AE重合,則CD的長為cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】據(jù)調查,超速行駛是引發(fā)交通事故的主要原因之一,所以規(guī)定以下情境中的速度不得超過15m/s,在一條筆直公路BD的上方A處有一探測儀,如圖,AD=24m,∠D=90°,第一次探測到一輛轎車從B點勻速向D點行駛,測得∠ABD=31°,2秒后到達C點,測得∠ACD=50°.
(1)求B,C的距離.
(2)通過計算,判斷此轎車是否超速.(tan31°≈0.6,tan50°≈1.2,結果精確到1m)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次夏令營活動中,小霞同學從營地A點出發(fā),要到距離A點10千米的C地去,先沿北偏東70°方向走了8千米到達B地,然后再從B地走了6千米到達目的地C,此時小霞在B地的( )
A.北偏東20°方向上
B.北偏西20°方向上
C.北偏西30°方向上
D.北偏西40°方向上
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com