在一個邊長為a(單位:cm)的正方形ABCD中.
(1)如圖1,如果N是AD中點(diǎn),F(xiàn)為AB中點(diǎn),連接DF,CN.
①求證:DF=CN;
②連接AC.求DH:HE:EF的值;
(2)如圖2,如果點(diǎn)E、M分別是線段AC、CD上的動點(diǎn),假設(shè)點(diǎn)E從點(diǎn)A出發(fā),以
2
cm/s速度沿AC向點(diǎn)C運(yùn)動,同時點(diǎn)M從點(diǎn)C出發(fā),以1cm/s的速度沿CD向點(diǎn)D運(yùn)動,運(yùn)動時間為t(t>0),連結(jié)DE并延長交正方形的邊于點(diǎn)F,過點(diǎn)M作MN⊥DF于H,交AD于N.判斷命題“當(dāng)點(diǎn)F是邊AB中點(diǎn)時,則點(diǎn)M是邊CD的三等分點(diǎn)”的真假,并說明理由.
分析:(1)①證明△ADF≌△DNC,即可得到DF=MN;
②利用勾股定理和相似三角形的判定與性質(zhì)以及直角三角形面積公式分別求出DH,EF,DF的長,進(jìn)而得出EH的長,即可得出DH:HE:EF的值;
(2)首先證明△AFE∽△CDE,利用比例式求出時間t=
1
3
a,進(jìn)而得到CM=
1
3
a=
1
3
CD,所以該命題為真命題.
解答:(1)①證明:∵∠DNC+∠ADF=90°,∠DNC+∠DCN=90°,
∴∠ADF=∠DCN,
在△ADF與△DNC中,
∠DAF=∠CDN=90°
AD=CD
∠ADF=∠DCN
,
∴△ADF≌△DNC(ASA),
∴DF=MN;

②解:∵AD=CD=AB=a,N,F(xiàn)分別是AD,AB中點(diǎn),
∴DN=AF=
a
2
,
∴DF=
5
2
a,
∵AF∥CD,
∴△AFE∽△CDE,
EF
DE
=
AF
CD
=
1
2
,
EF
DF
=
1
3
,
∴EF=
5
6
a,
∵DH×CN=DN×CD,
∴DH=
DN×CD
NC
=
1
2
a×a
5
2
a
=
5
5
a,
∴EH=
5
2
a-
5
6
a-
5
5
a=
2
5
15
a,
∴DH:HE:EF=
5
5
a:
2
5
15
a:
5
6
a=6:4:5;

(2)解:該命題是真命題.
理由如下:當(dāng)點(diǎn)F是邊AB中點(diǎn)時,則AF=
1
2
AB=
1
2
CD.
∵AB∥CD,
∴△AFE∽△CDE,
AE
EC
=
AF
CD
=
1
2
,
∴AE=
1
2
EC,則AE=
1
3
AC=
2
3
a,
∴t=
AE
2
=
1
3
a.
則CM=1•t=
1
3
a=
1
3
CD,
∴點(diǎn)M為邊CD的三等分點(diǎn).
點(diǎn)評:此題主要考查了幾何綜合題和相似三角形、全等三角形、正方形、命題證明等知識點(diǎn).解題要點(diǎn)是:(1)明確動點(diǎn)的運(yùn)動過程;(2)明確運(yùn)動過程中,各組成線段、三角形之間的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•資陽)在一個邊長為a(單位:cm)的正方形ABCD中,點(diǎn)E、M分別是線段AC,CD上的動點(diǎn),連結(jié)DE并延長交正方形的邊于點(diǎn)F,過點(diǎn)M作MN⊥DF于H,交AD于N.
(1)如圖1,當(dāng)點(diǎn)M與點(diǎn)C重合,求證:DF=MN;
(2)如圖2,假設(shè)點(diǎn)M從點(diǎn)C出發(fā),以1cm/s的速度沿CD向點(diǎn)D運(yùn)動,點(diǎn)E同時從點(diǎn)A出發(fā),以
2
cm/s速度沿AC向點(diǎn)C運(yùn)動,運(yùn)動時間為t(t>0);
①判斷命題“當(dāng)點(diǎn)F是邊AB中點(diǎn)時,則點(diǎn)M是邊CD的三等分點(diǎn)”的真假,并說明理由.
②連結(jié)FM、FN,△MNF能否為等腰三角形?若能,請寫出a,t之間的關(guān)系;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年四川省成都市高新區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

在一個邊長為a(單位:cm)的正方形ABCD中.

(1)如圖1,如果N是AD中點(diǎn),F(xiàn)為AB中點(diǎn),連接DF,CN.

①求證:DF=CN;

②連接AC.求DH:HE: EF的值;

(2)如圖2,如果點(diǎn)E、M分別是線段AC、CD上的動點(diǎn),假設(shè)點(diǎn)E從點(diǎn)A出發(fā),以cm/s速度沿AC向點(diǎn)C運(yùn)動,同時點(diǎn)M從點(diǎn)C出發(fā),以1cm/s的速度沿CD向點(diǎn)D運(yùn)動,運(yùn)動時間為t(t>0),連結(jié)DE并延長交正方形的邊于點(diǎn)F,過點(diǎn)M作MN⊥DF于H,交AD于N. 判斷命題“當(dāng)點(diǎn)F是邊AB中點(diǎn)時,則點(diǎn)M是邊CD的三等分點(diǎn)”的真假,并說明理由. (4分)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川資陽卷)數(shù)學(xué)(解析版) 題型:解答題

(2013年四川資陽11分)在一個邊長為a(單位:cm)的正方形ABCD中,點(diǎn)E、M分別是線段AC,CD上的動點(diǎn),連結(jié)DE并延長交正方形的邊于點(diǎn)F,過點(diǎn)M作MN⊥DF于H,交AD于N.

(1)如圖1,當(dāng)點(diǎn)M與點(diǎn)C重合,求證:DF=MN;

(2)如圖2,假設(shè)點(diǎn)M從點(diǎn)C出發(fā),以1cm/s的速度沿CD向點(diǎn)D運(yùn)動,點(diǎn)E同時從點(diǎn)A出發(fā),以cm/s速度沿AC向點(diǎn)C運(yùn)動,運(yùn)動時間為t(t>0);

①判斷命題“當(dāng)點(diǎn)F是邊AB中點(diǎn)時,則點(diǎn)M是邊CD的三等分點(diǎn)”的真假,并說明理由.

②連結(jié)FM、FN,△MNF能否為等腰三角形?若能,請寫出a,t之間的關(guān)系;若不能,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年四川省資陽市中考數(shù)學(xué)試卷(解析版) 題型:解答題

在一個邊長為a(單位:cm)的正方形ABCD中,點(diǎn)E、M分別是線段AC,CD上的動點(diǎn),連結(jié)DE并延長交正方形的邊于點(diǎn)F,過點(diǎn)M作MN⊥DF于H,交AD于N.
(1)如圖1,當(dāng)點(diǎn)M與點(diǎn)C重合,求證:DF=MN;
(2)如圖2,假設(shè)點(diǎn)M從點(diǎn)C出發(fā),以1cm/s的速度沿CD向點(diǎn)D運(yùn)動,點(diǎn)E同時從點(diǎn)A出發(fā),以cm/s速度沿AC向點(diǎn)C運(yùn)動,運(yùn)動時間為t(t>0);
①判斷命題“當(dāng)點(diǎn)F是邊AB中點(diǎn)時,則點(diǎn)M是邊CD的三等分點(diǎn)”的真假,并說明理由.
②連結(jié)FM、FN,△MNF能否為等腰三角形?若能,請寫出a,t之間的關(guān)系;若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案