精英家教網(wǎng)在正方形ABCD中,O是對角線AC的中點,P是對角線AC上的一動點,過點P作PF⊥CD于點F,如圖(1),當點P與點O重合時,顯然有DF=CF.如圖(2),若點P在線段AO上(不與點A、O重合),PE⊥PB且PE交CD于點E,
(1)求證:DF=EF;
(2)求證:PC-PA=
2
CE
分析:(1)要證明DF=EF,連接PD,證明PD=PE,利用等腰三角形的性質,底邊上三線合一,可以得出結論.
(2)由CE=CF-EF,又有PC和CF的關系、PA和EF的關系,結合到一起可以求解.
解答:精英家教網(wǎng)證明:如圖①連接PD,∵四邊形ABCD是正方形,
AC平分∠BCD,CB=CD,△BCP≌△DCP
∴∠PBC=∠PDC,PB=PD
∵PB⊥PE,∠BCD=90°,
∴∠PBC+∠PEC=360°-∠BPE-∠BCE=180°
∵∠PEC+∠PED=180°,
∴∠PBC=∠PED,
∴∠PED=∠PBC=∠PDC,
∴PD=PE,
∵PF⊥CD,
∴DF=EF.

(2)如圖②,過點P作PH⊥AD于點H,
由(1)知:PA=
2
PH=
2
DF=
2
EF
PC=
2
CF
∴PC-PA=
2
(CF-EF),
即PC-PA=
2
CE.
點評:本題考查了正方形的性質,合理的作出輔助線,利用各邊之間的關系,通過轉換的思想求證.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖所示,在正方形ABCD中,E為AD的中點,F(xiàn)為DC上的一點,且DF=
14
DC.求證:△BEF是直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、在正方形ABCD中,點G是BC上任意一點,連接AG,過B,D兩點分別作BE⊥AG,DF⊥AG,垂足分別為E,F(xiàn)兩點,求證:△ADF≌△BAE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•黑河)如圖1,在正方形ABCD中,點M、N分別在AD、CD上,若∠MBN=45°,易證MN=AM+CN
(1)如圖2,在梯形ABCD中,BC∥AD,AB=BC=CD,點M、N分別在AD、CD上,若∠MBN=
1
2
∠ABC,試探究線段MN、AM、CN有怎樣的數(shù)量關系?請寫出猜想,并給予證明.
(2)如圖3,在四邊形ABCD中,AB=BC,∠ABC+∠ADC=180°,點M、N分別在DA、CD的延長線上,若∠MBN=
1
2
∠ABC,試探究線段MN、AM、CN又有怎樣的數(shù)量關系?請直接寫出猜想,不需證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、在正方形ABCD中,P為對角線BD上一點,PE⊥BC,垂足為E,PF⊥CD,垂足為F,求證:EF=AP.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在正方形ABCD中,P是CD上一點,且AP=BC+CP,Q為CD中點,求證:∠BAP=2∠QAD.

查看答案和解析>>

同步練習冊答案