【題目】化簡求值:

(1)當a=﹣1,b=2時,求代數(shù)式﹣2(ab﹣3b2)﹣[6b2﹣(ab﹣a2]的值

(2)先化簡,再求值:4xy﹣2(x2﹣3xy+2y2+3(x2﹣2xy),當(x﹣3)2+|y+1|=0,求式子的值

(3)若(2mx2﹣x+3)﹣(3x2﹣x﹣4)的結果與x的取值無關,求m的值

【答案】(1)﹣ab﹣a2,1;(2)4xy﹣4y2,﹣16;(3)m=

【解析】

(1)根據(jù)去括號、合并同類項,可化簡整式,根據(jù)代數(shù)式求值,可得答案.

(2)原式去括號、合并同類項即可化簡,再利用非負數(shù)的性質得出x、y的值,繼而代入計算可得;

(3)與x無關說明含x的項都被消去,由此可得出m的值.

解:(1)原式=﹣2ab+6b2﹣6b2+ab﹣a2,

=﹣ab﹣a2

a=﹣1、b=2時,

原式=﹣(﹣1)×2﹣﹣12,

=2﹣1,

=1;

(2)原式=4xy﹣3x2+6xy﹣4y2+3x2﹣6xy,

=4xy﹣4y2,

(x﹣3)2+|y+1|=0,

x=3、y=﹣1,

則原式=4×3×(﹣1)﹣4×﹣12,

=﹣12﹣4,

=﹣16;

(3)原式=2mx2﹣x+3﹣3x2+x+4,

=(2m﹣3)x2+7,

∵結果與x的取值無關,

2m﹣3=0,

解得:m=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,山坡上有一棵與水平面垂直的大樹,一場臺風過后,大樹被刮傾斜后折斷倒在山坡上,樹的頂部恰好接觸到坡面.已知山坡的坡角∠AEF=23°,量得樹干傾斜角∠BAC=38°,大樹被折斷部分和坡面所成的角∠ADC=60°,AD=6m.

(1)求∠CAE的度數(shù);
(2)求這棵大樹折斷前的高度?
(結果精確到個位,參考數(shù)據(jù): =1.4, =1.7, =2.4).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,這是一個數(shù)值轉換機(箭頭為數(shù)進入轉換機的路徑,方框是對進入的數(shù)進行轉換的轉換機).

(1)當輸入7、2018這兩個數(shù)時,求出它們各自輸出的結果;

(2)若輸入一非零數(shù),其輸出結果為0,則輸入的數(shù)是多少?(找一個即可)

(3)若輸出的結果是2,請直接寫出輸入的數(shù).(用含自然數(shù)n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解市民“獲取新聞的最主要途徑”,某市記者開展了一次抽樣調查,根據(jù)調查結果繪制了如下尚不完整的統(tǒng)計圖.

根據(jù)以上信息解答下列問題:

(1)這次抽樣調查的樣本容量是

(2)通過“電視”了解新聞的人數(shù)占被調查人數(shù)的百分比為 ;扇形統(tǒng)計圖中, “手機上網(wǎng)”所對應的圓心角的度數(shù)是 ;

(3)請補全條形統(tǒng)計圖;

(4)若該市約有70萬人,請你估計其中將“電腦和手機上網(wǎng)”作為“獲取新聞的最主要途徑”的總人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】菱形ABCD中,∠B=60°,點E在邊BC上,點F在邊CD上.

(1)如圖1,若E是BC的中點,∠AEF=60°,求證:BE=DF;
(2)如圖2,若∠EAF=60°,求證:△AEF是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解食品安全狀況,質監(jiān)部門抽查了甲、乙、丙、丁四個品牌飲料的質量,將收集的數(shù)據(jù)整理并繪制成圖1和圖2兩幅尚不完整的統(tǒng)計圖,請根據(jù)圖中的信息,完成下列問題:

(1)這次抽查了四個品牌的飲料共 瓶;

(2)請你在答題卡上補全兩幅統(tǒng)計圖;

(3)若四個品牌飲料的平均合格率是95%,四個品牌飲料月銷售量約20萬瓶,請你估計這四個品牌的不合格飲料有多少瓶?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在河的兩岸有A,B兩個村莊,河寬為4千米,A、B兩村莊的直線距離 AB=10千米,A、B兩村莊到河岸的距離分別為1千米、3千米,計劃在河上修建一座橋MN垂直于兩岸,M點為靠近A村莊的河岸上一點,求AM+BN的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線經(jīng)過第一象限的點和點,且,過點軸,垂足為,的面積為

點的坐標;

求直線的函數(shù)表達式;

直線經(jīng)過線段上一點不與、重合),求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=60°,BC=2,CD△ABC的一條高線.若E,F(xiàn)分別是CDBC上的動點,則BE+EF的最小值是_____

查看答案和解析>>

同步練習冊答案