精英家教網 > 初中數學 > 題目詳情

【題目】(2017遼寧省葫蘆島市)如圖,∠MAN=60°,AP平分∠MAN,點B是射線AP上一定點,點C在直線AN上運動,連接BC,將∠ABC(0°<ABC<120°)的兩邊射線BCBA分別繞點B順時針旋轉120°,旋轉后角的兩邊分別與射線AM交于點D和點E

(1)如圖1,當點C在射線AN上時,①請判斷線段BCBD的數量關系,直接寫出結論;

②請?zhí)骄烤段AC,ADBE之間的數量關系,寫出結論并證明;

(2)如圖2,當點C在射線AN的反向延長線上時,BC交射線AM于點F,若AB=4,AC=,請直接寫出線段ADDF的長.

【答案】(1)BC=BD;AD+AC=BE;(2)AD=,DF=

【解析】試題(1)①結論:BC=BD.只要證明△BGD≌△BHC即可.②結論:AD+AC=BE.只要證明AD+AC=2AG=2EG,再證明EB=BE即可解決問題;

(2)如圖2中,作BGAMGBHANH,AKCFK.由(1)可知,△ABG≌△ABH,△BGD≌△BHC,易知BH,AH,BC,CH, AD的長,由sin∠ACH=,推出AK的長,設FG=y,則AF=yBF=,由△AFK∽△BFG,可得,可得關于y的方程,求出y即可解決問題.

試題解析:(1)①結論:BC=BD,

理由:如圖1中,作BGAMG,BHANH

∵∠MAN=60°,PA平分∠MANBGAMG,BHANH,∴BG=BH,∠GBH=∠CBD=120°,∴∠CBH=∠GBD,∵∠BGD=∠BHC=90°,∴△BGD≌△BHC,∴BD=BC;

②結論:AD+AC=BE

∵∠ABE=120°,∠BAE=30°,∴∠BEA=∠BAE=30°,∴BA=BE,∵BGAE,∴AG=GE,EG=BEcos30°=BE,∵△BGD≌△BHC,∴DG=CH,∵AB=AB,BG=BH,∴Rt△ABG≌Rt△ABH,∴AG=AH,∴AD+AC=AG+DG+AHCH=2AG=BE,∴AD+AC=BE;

(2)如圖2中,作BGAMG,BHANH,AKCFK

由(1)可知,△ABG≌△ABH,△BGD≌△BHC,

易知BH=GB=2,AH=AG=EG=,BC=BD= =CH=DG=,

AD=,∵sin∠ACH=,∴,∴AK=,

FG=y,則AF=y,BF=

∵∠AFK=∠BFG,∠AKF=∠BGF=90°,

∴△AFK∽△BFG,∴,∴,解得y=(舍棄),

DF=GF+DG=,即DF=

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】母親節(jié)前夕,我市某校學生積極參與關愛貧困母親的活動,他們購進一批單價為20元的孝文化衫在課余時間進行義賣,要求每件銷售價格不得高于27元,并將所得利潤捐給貧困母親。經試驗發(fā)現,若每件按22元的價格銷售時,每天能賣出42件;若每件按25元的價格銷售時,每天能賣出33件.假定每天銷售件數y(件)與銷售價格x(元/件)滿足一個以x為自變量的一次函數.

1)求yx滿足的函數關系式(不要求寫出x的取值范圍);

2)在不積壓且不考慮其他因素的情況下,銷售價格定為多少元時,才能使每天獲得的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拋物線y=﹣x2x+x軸交于點A,B(點A在點B的左邊),與y軸交于點C,點D是該拋物線的頂點.

(1)如圖1,連接CD,求線段CD的長;

(2)如圖2,點P是直線AC上方拋物線上一點,PFx軸于點F,PF與線段AC交于點E;將線段OB沿x軸左右平移,線段OB的對應線段是O1B1,當PE+EC的值最大時,求四邊形PO1B1C周長的最小值,并求出對應的點O1的坐標;

(3)如圖3,點H是線段AB的中點,連接CH,將△OBC沿直線CH翻折至△O2B2C的位置,再將△O2B2C繞點B2旋轉一周在旋轉過程中,點O2,C的對應點分別是點O3,C1,直線O3C1分別與直線AC,x軸交于點M,N.那么,在△O2B2C的整個旋轉過程中,是否存在恰當的位置,使△AMN是以MN為腰的等腰三角形?若存在,請直接寫出所有符合條件的線段O2M的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】出租車司機小李某天上午營運時是在東西走向的大街上進行的,如果規(guī)定向東為正,向西為負,他這天上午所接六位乘客的行車里程(單位:)如下:

,,,,

問:(1)將最后一位乘客送到目的地時,小李在什么位置?

2)若汽車耗油量為(升/千米),這天上午小李接送乘客,出租車共耗油多少升?

3)若出租車起步價為8元,起步里程為(包括),超過部分每千米1.2元,問小李這天上午共得車費多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,如圖,在RtABC中,∠ACB=90°,AE平分∠BACBC于點EDAC上的點,BE=DE

1)求證:∠B+EDA=180°;

2)求 的值。.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我省某工藝廠為全運會設計了一款成本為每件20元得工藝品,投放市場進行試銷后發(fā)現每天的銷售量y(件)是售價x(元∕件)的一次函數,當售價為22元∕件時,每天銷售量為780件;當售價為25元∕件時,每天的銷售量為750件.

(1)求y與x的函數關系式;

(2)如果該工藝品售價最高不能超過每件30元,那么售價定為每件多少元時,工藝廠銷售該工藝品每天獲得的利潤最大?最大利潤是多少元?(利潤=售價﹣成本)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列說法正確的是

A.袋中有形狀、大小、質地完全一樣的5個紅球和1個白球,從中隨機抽出一個球,一定是紅球

B.天氣預報“明天降水概率10%”,是指明天有10%的時間會下雨

C.某地發(fā)行一種福利彩票,中獎率是千分之一,那么,買這種彩票1000張,一定會中獎

D.連續(xù)擲一枚均勻硬幣,若5次都是正面朝上,則第六次仍然可能正面朝上

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】今年暑假,小麗爸爸的同事送給她爸爸一張北京故宮的門票,她和哥哥兩人都很想去參觀,可門票只有一張.讀九年級的哥哥想了一個辦法,他拿了八張撲克牌,將數字為1,2,3,5的四張牌給小麗,將數字為4,6,7,8的四張牌留給自己,并按如下游戲規(guī)則進行:小利哥哥從各自的四張牌中隨機抽出一張,然后將抽出的兩張撲克牌上的數字相加,如果和為偶數,和小麗去;如果和為奇數,則哥哥去.

(1)請用畫樹狀圖或列表的方法求小麗去北京故宮參觀的概率;

(2)哥哥設計的游戲規(guī)則公平嗎?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場為了吸引顧客,設計了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標有010、2030的字樣.規(guī)定:顧客在本商場同一日內,每消費滿200元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回),商場根據兩小球所標金額的和返還相應價格的購物券,可以重新在本商場消費,某顧客剛好消費200元.

1)該顧客至少可得到_____元購物券,至多可得到_______元購物券;

2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于30元的概率.

查看答案和解析>>

同步練習冊答案