【題目】如圖,P是等邊三角形ABC內(nèi)一點(diǎn),將線段AP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到線段AQ,連接BQ.若PA=6,PB=8,PC=10,則四邊形APBQ的面積為 .
【答案】24+9.
【解析】
試題分析:如圖,連結(jié)PQ,根據(jù)等邊三角形的性質(zhì)得∠BAC=60°,AB=AC,再根據(jù)旋轉(zhuǎn)的性質(zhì)得AP=PQ=6,∠PAQ=60°,即可判定△APQ為等邊三角形,所以PQ=AP=6;在△APC和△ABQ中,AB=AC,∠CAP=∠BAQ,AP=PQ,利用SAS判定△APC≌△ABQ,根據(jù)全等三角形的性質(zhì)可得PC=QB=10;在△BPQ中,已知PB2=82=64,PQ2=62,BQ2=102,即PB2+PQ2=BQ2,所以△PBQ為直角三角形,∠BPQ=90°,所以S四邊形APBQ=S△BPQ+S△APQ=×6×8+×62=24+9.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為落實(shí)市教育局提出的“全員育人,創(chuàng)辦特色學(xué)!钡臅(huì)議精神,決心打造“書(shū)香校園”,計(jì)劃用不超過(guò)1900本科技類(lèi)書(shū)籍和1620本人文類(lèi)書(shū)籍,組建中、小型兩類(lèi)圖書(shū)角共30個(gè).已知組建一個(gè)中型圖書(shū)角需科技類(lèi)書(shū)籍80本,人文類(lèi)書(shū)籍50本;組建一個(gè)小型圖書(shū)角需科技類(lèi)書(shū)籍30本,人文類(lèi)書(shū)籍60本.
(1)符合題意的組建方案有幾種?請(qǐng)你幫學(xué)校設(shè)計(jì)出來(lái);
(2)若組建一個(gè)中型圖書(shū)角的費(fèi)用是860元,組建一個(gè)小型圖書(shū)角的費(fèi)用是570元,試說(shuō)明(1)中哪種方案費(fèi)用最低,最低費(fèi)用是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】方程(m﹣2016)x|m|﹣2015+(n+4)y|n|﹣3=2018是關(guān)于x、y的二元一次方程,則( )
A.m=±2016;n=±4
B.m=2016,n=4
C.m=﹣2016,n=﹣4
D.m=﹣2016,n=4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠AOB是一個(gè)直角,作射線OC,再分別作∠AOC和∠BOC的平分線OD、OE.
(1)如圖①,當(dāng)∠BOC=70°時(shí),求∠DOE的度數(shù);
(2)如圖②,當(dāng)射線OC在∠AOB內(nèi)繞點(diǎn)O旋轉(zhuǎn)時(shí),∠DOE的大小是否發(fā)生變化?若變化,說(shuō)明理由;若不變,求∠DOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是等邊三角形ABC內(nèi)一點(diǎn),將線段AP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到線段AQ,連接BQ.若PA=6,PB=8,PC=10,則四邊形APBQ的面積為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com