【題目】如圖,已知S△ABC=12,AD平分∠BAC,且AD⊥BD于點D,則S△ADC的值是( )

A. 10 B. 8 C. 6 D. 4

【答案】C

【解析】

延長BDAC于點E,則可知ABE為等腰三角形,則SABD=SADE,SBDC=SCDE,可得出SADC=SABC

解:如圖,延長BDAC于點E,

AD平分∠BAE,ADBD,

∴∠BAD=EAD,ADB=ADE,

ABDAED中,

,

∴△ABD≌△AED(ASA),

BD=DE,

SABD=SADE,SBDC=SCDE

SABD+SBDC=SADE+SCDE=SADC,

SADC=SABC=×12=6(m2),

故答案選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC,∠ACB=90°,AC=BC=4,DAB的中點,P是平面上的一點,且DP=1,連接BP,CP

(1)如圖,當點P在線段BD上時,求CP的長;

(2)當△BPC是等腰三角形時,求CP的長;

(3)將點B繞點P順時針旋轉(zhuǎn)90°得到點B′,連接AB′,求AB′的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的直徑AB=2,C是弧AB的中點,AE,BE分別平分∠BAC和∠ABC,以E為圓心,AE為半徑作扇形EAB,π3,則陰影部分的面積為( 。

A. ﹣4 B. 7﹣4 C. 6﹣ D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,AB⊙O的直徑,點CD⊙O上,且BC=6cm,AC=8cm,∠ABD=45°

1)求BD的長;

2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊ABC中,E,F(xiàn)分別在邊AC、BC上,滿足AE=CF,連接BE,AF交于點P.

(1)求證:ABE≌△CAF

(2)求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,D,E分別是AB,BC邊上的點,且DE∥AC,若,,則△ACD的面積為(

A. 64 B. 72 C. 80 D. 96

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人在玩轉(zhuǎn)盤游戲時,把兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤AB分成4等份、3等份的扇形區(qū)域,并在每一小區(qū)域內(nèi)標上數(shù)字(如圖所示),指針的位置固定.游戲規(guī)則:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當轉(zhuǎn)盤停止后,若指針所指兩個區(qū)域的數(shù)字之和為3的倍數(shù),甲勝;若指針所指兩個區(qū)域的數(shù)字之和為4的倍數(shù)時,乙勝.如果指針落在分割線上,則需要重新轉(zhuǎn)動轉(zhuǎn)盤.

1)試用列表或畫樹形圖的方法,求甲獲勝的概率;

2)請問這個游戲規(guī)則對甲、乙雙方公平嗎?試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PCBA的延長線于點P,OF∥BCACACE,交PC于點F,連接AF

1)判斷AF⊙O的位置關系并說明理由;

2)若⊙O的半徑為4AF=3,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一項工程,如果由甲隊單獨做這項工程剛好如期完成,若乙隊單獨做這項工程,要比規(guī)定日期多5天完成.現(xiàn)由若甲、乙兩隊合作4天后,余下的工程由乙隊單獨做,也正好如期完成.已知甲、乙兩隊施工一天的工程費分別為16萬元和14萬元.

1)求規(guī)定如期完成的天數(shù).

2)現(xiàn)有兩種施工方案:方案一:由甲隊單獨完成;方案二:先由甲、乙合作4天,再由乙隊完成其余部分;通過計算說明,哪一種方案比較合算.

查看答案和解析>>

同步練習冊答案