已知:三角形ABC中,∠A=90°,AB=AC,D為BC的中點(diǎn)
(1)如圖,E,F(xiàn)分別是AB,AC上的點(diǎn),且BE=AF,求證:△DEF為等腰直角三角形。
(2)若E,F(xiàn)分別為AB,CA延長線上的點(diǎn),仍有BE=AF,其他條件不變,那么,△DEF是否仍為等腰直角三角形?證明你的結(jié)論。
(1)連結(jié)AD,因?yàn)锳B=AC,∠BAC=90°D為BC的中點(diǎn)       
         所以AD⊥BC ,BD=AD,所以∠B=∠DAC=45°       
        又BE=AF,所以△BDE≌△ADF
        所以ED=FD,∠BDE=∠ADF        
        所以∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°       
        所以△DEF為等腰直角三角形
(2)若E,F(xiàn)分別是AB,CA延長線上的點(diǎn),如圖所示       
         連結(jié)AD,因?yàn)锳B=AC,∠BAC=90°,D為BC的中點(diǎn)      
         所以AD=BD,AD⊥BC,所以∠DAC=∠ABD=45°
         所以∠DAF=∠DBE=135°      
         又AF=BE,所以△DAF≌△DBE
         所以FD=ED,∠FDA=∠EDB      
         所以∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°      
         所以△DEF仍為等腰直角三角
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:三角形ABC中,BC=2,這邊上的中線長AD=1,AB+AC=1+
3
,則AB•AC為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•德化縣模擬)如圖,已知直角三角形ABC中,∠ACB=90°,AC=1,BC=2,過點(diǎn)C作CA1⊥AB,垂足為A1,再過A1作A1C1⊥BC,垂足為C1;過C1作C1A2⊥AB,垂足為A2,再過A2作A2C2⊥BC,垂足為C2;…,這樣一直做下去,得到了一組線段CA1,A1C1,C1A2,…,則第1條線段A1C=
2
5
5
2
5
5
,第2n條線段AnCn=
2
5
5
2n
2
5
5
2n

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•齊齊哈爾)已知等腰三角形ABC中,∠ACB=90°,點(diǎn)E在AC邊的延長線上,且∠DEC=45°,點(diǎn)M、N分別是DE、AE的中點(diǎn),連接MN交直線BE于點(diǎn)F.當(dāng)點(diǎn)D在CB邊的延長線上時(shí),如圖1所示,易證MF+FN=
12
BE

(1)當(dāng)點(diǎn)D在CB邊上時(shí),如圖2所示,上述結(jié)論是否成立?若成立,請給與證明;若不成立,請寫出你的猜想,并說明理由.
(2)當(dāng)點(diǎn)D在BC邊的延長線上時(shí),如圖3所示,請直接寫出你的結(jié)論.(不需要證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知等腰三角形ABC中,∠A=40°,則∠B的度數(shù)可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在三角形ABC中,若AB=AC,BD=BC,∠C=70°,求∠ABD的度數(shù)=
30°
30°

查看答案和解析>>

同步練習(xí)冊答案