如圖,拋物線與x軸交于點A(﹣,0)、點B(2,0),與y軸交于點C(0,1),連接BC.

(1)求拋物線的函數(shù)關系式;

(2)點N為拋物線上的一個動點,過點N作NP⊥x軸于點P,設點N的橫坐標為t(﹣<t<2),求△ABN的面積S與t的函數(shù)關系式;

(3)若﹣<t<2且t≠0時△OPN∽△COB,求點N的坐標.


解:(1)設拋物線的解析式為y=ax2+bx+c,由題可得:

解得:,

∴拋物線的函數(shù)關系式為y=﹣x2+x+1;

(2)當﹣<t<2時,yN>0,

∴NP==yN=﹣t2+t+1,

∴S=AB•PN

=×(2+)×(﹣t2+t+1)

=(﹣t2+t+1)

=﹣t2+t+;

(3)∵△OPN∽△COB,

=,

=,

∴PN=2PO.

①當﹣<t<0時,PN==yN=﹣t2+t+1,PO==﹣t,

∴﹣t2+t+1=﹣2t,

整理得:3t2﹣9t﹣2=0,

解得:t1=,t2=

>0,﹣<0,

∴t=,此時點N的坐標為(,);

②當0<t<2時,PN==yN=﹣t2+t+1,PO==t,

∴﹣t2+t+1=2t,

整理得:3t2﹣t﹣2=0,

解得:t3=﹣,t4=1.

∵﹣<0,0<1<2,

∴t=1,此時點N的坐標為(1,2).

綜上所述:點N的坐標為(,)或(1,2).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:


如圖,有一塊邊長為6cm的正三角形紙板,在它的三個角處分別截去一個彼此全等的箏形,再沿圖中的虛線折起,做成一個無蓋的直三棱柱紙盒,則該紙盒側面積的最大值是(  )

 

A.

cm2

B.

cm2

C.

cm2

D.

cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


已知E,F(xiàn)分別為正方形ABCD的邊BC,CD上的點,AF,DE相交于點G,當E,F(xiàn)分別為邊BC,CD的中點時,有:①AF=DE;②AF⊥DE成立.

試探究下列問題:

(1)如圖1,若點E不是邊BC的中點,F(xiàn)不是邊CD的中點,且CE=DF,上述結論①,②是否仍然成立?(請直接回答“成立”或“不成立”),不需要證明)

(2)如圖2,若點E,F(xiàn)分別在CB的延長線和DC的延長線上,且CE=DF,此時,上述結論①,②是否仍然成立?若成立,請寫出證明過程,若不成立,請說明理由;

(3)如圖3,在(2)的基礎上,連接AE和BF,若點M,N,P,Q分別為AE,EF,F(xiàn)D,AD的中點,請判斷四邊形MNPQ是“矩形、菱形、正方形”中的哪一種,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖是由火柴棒搭成的幾何圖案,則第n個圖案中有  根火柴棒.(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


在平面直角坐標系xOy中,過點P(0,2)作直線l:y=x+b(b為常數(shù)且b<2)的垂線,垂足為點Q,則tan∠OPQ= 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


將直尺和直角三角板按如圖方式擺放,已知∠1=30°,則∠2的大小是(  )

 

A.

30°

B.

45°

C.

60°

D.

65°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,在▱ABCD中,E、F為對角線AC上兩點,且BE∥DF,請從圖中找出一對全等三角形:  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


一個幾何體的三視圖如圖所示,則這個幾何體是( 。

 

A.

圓柱

B.

圓錐

C.

長方體

D.

正方體

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


為進一步推廣“陽光體育”大課間活動,某中學對已開設的A實心球,B立定跳遠,C跑步,D跳繩四種活動項目的學生喜歡情況進行調查,隨機抽取了部分學生,并將調查結果繪制成圖1,圖2的統(tǒng)計圖,請結合圖中的信息解答下列問題:

(1)請計算本次調查中喜歡“跑步”的學生人數(shù)和所占百分比,并將兩個統(tǒng)計圖補充完整;

(2)隨機抽取了5名喜歡“跑步”的學生,其中有3名女生,2名男生,現(xiàn)從這5名學生中任意抽取2名學生,請用畫樹狀圖或列表的方法,求出剛好抽到同性別學生的概率.

查看答案和解析>>

同步練習冊答案