【題目】如圖,在四邊形ABCD中,ADBC,BCAD,∠B與∠C互余, AB,CD分別平移到EFEG的位置,則△EFG________三角形,若AD=2cm,BC=8cm,則FG=____________

【答案】直角 4

【解析】

利用平移的性質(zhì)可以知∠B+∠C=∠EFG+∠EGF,然后根據(jù)三角形內(nèi)角和定理在△EFG中求得∠FEG=90°,則可得出△EFG的形狀,根據(jù)平移的性質(zhì)得BF=AE,CG=DE,由此即可求得FG的長.

∵AB,CD分別平移到EF和EG的位置后,∠B的對應角是∠EFG,∠C的對應角是∠EGF,

又∵∠B與∠C互余,

∴∠EFG與∠EGF互余,

∴在△EFG中,∠FEG=90°(三角形內(nèi)角和定理),

∴△EFG為Rt△EFG,

∵AB平移的長度AE=BF,CD平移的長度DE=CG,

∴FG的長度為BC-CG-BF=BC-(AE+ED)=8-4=4cm,

故答案為:直角,4cm.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某出版社出版適合中學生閱讀的科普讀物,該讀物首次出版印刷的印數(shù)不少于5000冊時,投入的成本與印數(shù)間的相應數(shù)據(jù)如下表:

印數(shù)x(冊)

5000

8000

11000

14000

成本y(元)

28500

36000

43500

51000

(1)通過對上表中數(shù)據(jù)的探究,你發(fā)現(xiàn)這種讀物的投入成本y(元)是印數(shù)x(冊)的正比例函數(shù)?還是一次函數(shù)?并求出這個函數(shù)的表達式(不要求寫出x的取值范圍);

(2)如果出版社投入成本60000元,那么能印該讀物多少冊?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在“一帶一路”戰(zhàn)略的影響下,某茶葉經(jīng)銷商準備把“茶路”融入“絲路”,經(jīng)計算,他銷售10kgA級別和20kgB級別茶葉的利潤為4000元,銷售20kgA級別和10kgB級別茶葉的利潤為3500元.
(1)求每千克A級別茶葉和B級別茶葉的銷售利潤;
(2)若該經(jīng)銷商一次購進兩種級別的茶葉共200kg用于出口,其中B級別茶葉的進貨量不超過A級別茶葉的2倍,請你幫該經(jīng)銷商設計一種進貨方案使銷售總利潤最大,并求出總利潤的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某運動品牌店對第一季度A、B兩款運動鞋的銷售情況進行統(tǒng)計.兩款運動鞋的銷售量及總銷售額如圖所示:
(1)一月份B款運動鞋的銷售量是A款的 ,則一月份B款運動鞋銷售了多少雙?
(2)第一節(jié)度這兩款運動鞋的銷售單價保持不變,求三月份的總銷售額(銷售額=銷售單價×銷售量);
(3)綜合第一季度的銷售情況,請你對這兩款運動鞋的進貨、銷售等方面提出一條建議.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為更新果樹品種,某果園計劃新購進A、B兩個品種的果樹苗栽植培育,若計劃購進這兩種果樹苗共45棵,其中A種苗的單價為7元/棵,購買B種苗所需費用y(元)與購買數(shù)量x(棵)之間存在如圖所示的函數(shù)關系.
(1)求y與x的函數(shù)關系式;
(2)若在購買計劃中,B種苗的數(shù)量不超過35棵,但不少于A種苗的數(shù)量,請設計購買方案,使總費用最低,并求出最低費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題提出
(1)如圖①,已知△ABC,請畫出△ABC關于直線AC對稱的三角形.

(2)問題探究
如圖②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在邊BC、CD上分別存在點G、H,使得四邊形EFGH的周長最小?若存在,求出它周長的最小值;若不存在,請說明理由.

(3)如圖③,有一矩形板材ABCD,AB=3米,AD=6米,現(xiàn)想從此板材中裁出一個面積盡可能大的四邊形EFGH部件,使∠EFG=90°,EF=FG= 米,∠EHG=45°,經(jīng)研究,只有當點E、F、G分別在邊AD、AB、BC上,且AF<BF,并滿足點H在矩形ABCD內(nèi)部或邊上時,才有可能裁出符合要求的部件,試問能否裁得符合要求的面積盡可能大的四邊形EFGH部件?若能,求出裁得的四邊形EFGH部件的面積;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】從﹣3,﹣1, ,1,3這五個數(shù)中,隨機抽取一個數(shù),記為a,若數(shù)a使關于x的不等式組 無解,且使關于x的分式方程 =﹣1有整數(shù)解,那么這5個數(shù)中所有滿足條件的a的值之和是(
A.﹣2
B.﹣3
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用適當?shù)姆椒ń夥匠蹋?/span>

(1) 3x2 2x 0; (2)

(3) x2 +2 x 5 0; (4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中,正確的個數(shù)有( 。

①已知直角三角形的面積為2,兩直角邊的比為12,則斜邊長為

②直角三角形的最大邊長為,最短邊長為1,則另一邊長為;

③在△ABC中,若∠A:∠B:∠C=1:56,則△ABC為直角三角形;

④等腰三角形面積為12,底邊上的高為4,則腰長為5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案