精英家教網 > 初中數學 > 題目詳情
(2003•南京)如圖,⊙O與⊙O1相交于A、B兩點,點O在⊙On上,⊙On的弦OC交AB于點D.
(1)求證:OA2=OC•OD;
(2)如果AC+BC=OC,⊙O的半徑為r,求證:AB=

【答案】分析:(1)欲證OA2=OC•OD,通過證明△AOC∽△DOA可以得出;
(2)因為AC+BC=OC,⊙O的半徑為r,欲證AB=,只需證明(AC+BC):OC=AB:OA;通過證明△AOC∽△DOA,△OBD∽△OCB,得出比例形式相加,即可得出.
解答:證明:(1)連接OB.
∵OA=OB,
∴∠OAB=∠OBA.
∵∠OCA=∠OBA,
∴∠OAB=∠OCA.
∵∠AOC=∠DOA,
∴△AOC∽△DOA.
,
∴OA2=OC•OD.

(2)∵△AOC∽△DOA,

同理可得,
,

∵AC+BC=OC,OA=r,
∴AB=
點評:本題考查了相似三角形的性質.特別注意:第(2)小題構思巧妙,解答此類題關鍵是綜合兩個相似比,得出結論.
練習冊系列答案
相關習題

科目:初中數學 來源:2003年全國中考數學試題匯編《一次函數》(04)(解析版) 題型:解答題

(2003•南京)如圖,直線y=-x+4與x軸、y軸分別交于點M、N.
(1)求M、N兩點的坐標;
(2)如果點P在坐標軸上,以點P為圓心,為半徑的圓與直線y=-x+4相切,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源:2003年江蘇省南京市中考數學試卷(解析版) 題型:解答題

(2003•南京)如圖,直線y=-x+4與x軸、y軸分別交于點M、N.
(1)求M、N兩點的坐標;
(2)如果點P在坐標軸上,以點P為圓心,為半徑的圓與直線y=-x+4相切,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源:2003年全國中考數學試題匯編《銳角三角函數》(04)(解析版) 題型:解答題

(2003•南京)如圖,∠POQ=90°,邊長為2cm的正方形ABCD的頂點B在OP上,C在OQ上,且∠OBC=30°,分別求點A、D到OP的距離.

查看答案和解析>>

科目:初中數學 來源:2003年全國中考數學試題匯編《圓》(03)(解析版) 題型:選擇題

(2003•南京)如圖,AB是⊙O的直徑,P是AB延長線上的一點,PC切⊙O于點C,PC=3,PB=1,則⊙O的半徑等于( )

A.
B.3
C.4
D.

查看答案和解析>>

科目:初中數學 來源:2003年全國中考數學試題匯編《三角形》(04)(解析版) 題型:填空題

(2003•南京)如圖,正六邊形DEFGHI的頂點都在邊長為6cm的正三角形ABC的邊上,則這個正六邊形的邊長是    cm.

查看答案和解析>>

同步練習冊答案