【題目】(8分)如圖,四邊形ABCD為正方形,點A的坐標(biāo)為(0,1),點B的坐標(biāo)為(0,﹣2),反比例函數(shù)的圖象經(jīng)過點C,一次函數(shù)的圖象經(jīng)過A、C兩點

(1)求反比例函數(shù)與一次函數(shù)的解析式;

(2)求反比例函數(shù)與一次函數(shù)的另一個交點M的坐標(biāo);

(3)若點P是反比例函數(shù)圖象上的一點,OAP的面積恰好等于正方形ABCD的面積,求P點的坐標(biāo).

【答案】(1),;(2)M(﹣2,3);(3)P(18,)或(﹣18,).

【解析】

試題(1)先A點和B點坐標(biāo)得到正方形的邊長,于是可得到C的坐標(biāo),然后利用待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式即可;

(2)通過解關(guān)于反比例函數(shù)解析式與一次函數(shù)的解析式所組成的方程組可得到M點的坐標(biāo);

(3)設(shè)P(t,),三角形面積公式和正方形面積公式得到×1×|t|=3×3,然后解絕對值方程求出t即可得到P點坐標(biāo).

試題解析:(1)點A的坐標(biāo)為(0,1),點B的坐標(biāo)為(0,﹣2),AB=1+2=3,四邊形ABCD為正方形,Bc=3,C(3,﹣2),把C(3,﹣2)代入,得k=3×(﹣2)=﹣6,反比例函數(shù)解析式為,把C(3,﹣2),A(0,1)代入,解得一次函數(shù)解析式為;

(2)解方程組,,M點的坐標(biāo)為(﹣2,3);

(3)設(shè)P(t,),∵△OAP的面積恰好等于正方形ABCD的面積,×1×|t|=3×3,解得t=18或t=﹣18,P點坐標(biāo)為(18,)或(﹣18,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,M、N分別是AD、BC的中點,P、Q分別是BM、DN的中點.

1)求證:BMDN;

2)求證:四邊形MPNQ是菱形;

3)矩形ABCD的邊長ABAD滿足什么數(shù)量關(guān)系時四邊形MPNQ為正方形,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一只不透明的袋子中裝有2個白球和1個紅球,這些球除顏色外都相同,攪勻后從中任意摸出1個球(不放回),再從余下的2個球中任意摸出1個球.
(1)用樹狀圖或列表等方法列出所有可能出現(xiàn)的結(jié)果;
(2)求兩次摸到的球的顏色不同的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將坐標(biāo)原點O沿x軸向左平移2個單位長度得到點A,過點A作y軸的平行線交反比例函數(shù)y=的圖象于點B,AB=

(1)求反比例函數(shù)的解析式;

(2)若P(x1,y1)、Q(x2,y2)是該反比例函數(shù)圖象上的兩點,且x1<x2時,y1>y2,指出點P、Q各位于哪個象限?并簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,,試說明直線ADBC垂直請在下面的解答過程的空格內(nèi)填空或在括號內(nèi)填寫理由

理由:,已知

____________,______

____________

,已知

______等量代換

__________________

______

,已知

,,

____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,△ABC中,ADBC,AE平分∠BAC

1)若∠B=40°,∠C=70°,求∠DAE的度數(shù),并說明理由;

2)若∠B=α,∠C=β(α<β),請你根據(jù)(1)問的結(jié)果大膽猜想∠DAE與α,β間的等量關(guān)系 .(不需說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,線段AB、CD相交于點O,連結(jié)ACBD,我們把形如圖1的圖形稱之為“8字形”,那么在這一個簡單的圖形中,到底隱藏了哪些數(shù)學(xué)知識呢?下面就請你發(fā)揮聰明才智,解決以下問題:

(1)在圖1中,請寫出∠A、∠B、∠C、∠D之間的數(shù)量關(guān)系,并說明理由;

(2)仔細(xì)觀察,在圖2中“8字形”的個數(shù)有 個;

(3)在圖2中,若∠B70°,∠C84°,∠CAB和∠BDC的平分線APDP相交于點P,并且與CDAB分別相交于M、N利用(1)的結(jié)論,試求∠P的度數(shù);

(4)在圖3中,如果∠B和∠C為任意角,并且APDP分別是∠CAB和∠BDC的四等分線,即∠PAOCAO BDPBDO,那么∠P與∠C、∠B之間存在的數(shù)量關(guān)系是 (直接寫出結(jié)論即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面推理過程:

如圖,已知∠1 ∠2,∠B ∠C,可推得AB∥CD.理由如下:

∵∠1 ∠2(已知),

∠1 ∠CGD______________ _________),

∴∠2 ∠CGD(等量代換).

∴CE∥BF___________________ ________).

∴∠ ∠C__________________________).

∵∠B ∠C(已知),

∴∠ ∠B(等量代換).

∴AB∥CD________________________________).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的方格地面上,標(biāo)有編號A,B,C的3個小方格地面是空地,另外6個小方格地面是草坪,除此以外小方格地面完全相同.

(1)一只自由飛行的鳥,將隨意地落在圖中的方格地面上,問小鳥落在草坪上的概率是多少?
(2)現(xiàn)從3個小方格空地中任意選取2個種植草坪,則剛好選取A和B的2個小方格空地種植草坪的概率是多少(用樹形圖或列表法求解)?

查看答案和解析>>

同步練習(xí)冊答案