【題目】如圖,將邊長為的正方形的邊長增加,得到一個邊長為的正方形.在圖1的基礎(chǔ)上,某同學(xué)設(shè)計了一個解釋驗證的方案(詳見方案1)
方案1.如圖2,用兩種不同的方式表示邊長為的正方形的面積.
方式1:
方式2:
因此,
(1)請模仿方案1,在圖1的基礎(chǔ)上再設(shè)計一種方案,用以解釋驗證;
(2)如圖3,在邊長為的正方形紙片上剪掉邊長為的正方形,請在此基礎(chǔ)上再設(shè)計一個方案用以解釋驗證.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】撫順某中學(xué)為了解八年級學(xué)生的體能狀況,從八年級學(xué)生中隨機抽取部分學(xué)生進行體能測試,測試結(jié)果分為A,B,C,D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:
(1)本次抽樣調(diào)查共抽取了多少名學(xué)生?
(2)求測試結(jié)果為C等級的學(xué)生數(shù),并補全條形圖;
(3)若該中學(xué)八年級共有700名學(xué)生,請你估計該中學(xué)八年級學(xué)生中體能測試結(jié)果為D等級的學(xué)生有多少名?
(4)若從體能為A等級的2名男生2名女生中隨機的抽取2名學(xué)生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形的邊分別在軸、軸上,點的坐標(biāo)為。點分別在邊上,。沿直線將翻折,點落在點處。則點的坐標(biāo)為__________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位長度的正方形,每個小正方形的頂點叫格點,ABC的頂點均在格點上.
(1)先將ABC向上平移4個單位后得到的A1B1C1,再將A1B1C1繞點C1按順時針方向旋轉(zhuǎn)90°后所得到的A2B2 C1,在圖中畫出A1B1C1和A2B2 C1.
(2)A2B2 C1能由ABC繞著點O旋轉(zhuǎn)得到,請在網(wǎng)格上標(biāo)出點O.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周日,小華從家沿著一條筆直的公路步行去報亭看報,看了一段時間后,他按原路返回家中,小華離家的距離y(單位:m)與他所用的時間t(單位:min)之間的函數(shù)關(guān)系如圖所示,下列說法中不正確的是( )
A. 小華家離報亭的距離是1200m
B. 小華從家去報亭的平均速度是80m/min
C. 小華從報亭返回家中的平均速度是80m/min
D. 小華在報亭看報用了15min
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,D為AB的中點,四邊形BCED為平行四邊形,DE,AC相交于F.連接DC,AE.
(1)試確定四邊形ADCE的形狀,并說明理由.
(2)若AB=16,AC=12,求四邊形ADCE的面積.
(3)當(dāng)△ABC滿足什么條件時,四邊形ADCE為正方形?請給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)y=ax2+bx﹣4(a≠0)的圖象與x軸交于A(﹣2,0)、C(8,0)兩點,與y軸交于點B,其對稱軸與x軸交于點D.
(1)求該二次函數(shù)的解析式;
(2)如圖1,連結(jié)BC,在線段BC上是否存在點E,使得△CDE為等腰三角形?若存在,求出所有符合條件的點E的坐標(biāo);若不存在,請說明理由;
(3)如圖2,若點P(m,n)是該二次函數(shù)圖象上的一個動點(其中m>0,n<0),連結(jié)PB,PD,BD,求△BDP面積的最大值及此時點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】因式分解是數(shù)學(xué)解題的一種重要工具,掌握不同因式分解的方法對數(shù)學(xué)解題有著重要的意義.我們常見的因式分解方法有:提公因式法、公式法、分組分解法、十字相乘法等.在此,介紹一種方法叫“試根法”.例:,當(dāng)時,整式的值為0,所以,多項式有因式,設(shè)
,展開后可得,所以,根據(jù)上述引例,請你分解因式:
(1);
(2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四邊形ABCD的面積是18,則DP的長是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com