【題目】如圖,方格紙中的每個小方格都是邊長為1個單位長度的正方形,每個小正方形的頂點叫格點,ABC的頂點均在格點上.
(1)先將ABC向上平移4個單位后得到的A1B1C1,再將A1B1C1繞點C1按順時針方向旋轉90°后所得到的A2B2 C1,在圖中畫出A1B1C1和A2B2 C1.
(2)A2B2 C1能由ABC繞著點O旋轉得到,請在網格上標出點O.
科目:初中數學 來源: 題型:
【題目】如圖所示AB為⊙O的一條弦,點C為劣弧AB的中點,E為優(yōu)弧AB上一點,點F在AE的延長線上,且BE=EF,線段CE交弦AB于點D.
(1)求證:CE∥BF;
(2)若BD=2,且EA:EB:EC=3:1:,求△BCD的面積(注:根據圓的對稱性可知OC⊥AB).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=x2+bx+c的圖象與x軸交于 A、B兩點,與y軸交于點C,OB=OC.點D在函數圖象上,CD∥x軸,且CD=2,直線l是拋物線的對稱軸,E是拋物線的頂點.
(1)求b、c的值;
(2)如圖①,連接BE,線段OC上的點F關于直線l的對稱點F'恰好在線段BE上,求點F的坐標;
(3)如圖②,動點P在線段OB上,過點P作x軸的垂線分別與BC交于點M,與拋物線交于點N.試問:拋物線上是否存在點Q,使得△PQN與△APM的面積相等,且線段NQ的長度最?如果存在,求出點Q的坐標;如果不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市出租車計費方式如圖所示,請根據圖象回答問題.
(1)出租車起價是多少元?在多少千米之內只收起價費?
(2)由圖象求出起價里程走完之后每行駛1千米所增加的費用;
(3)小張想用30元坐車在該市游玩,試求他最多能走多少千米.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:一個正比例函數與一個一次函數的圖象交于點A(1,4)且一次函數的圖象與x軸交于點B(3,0),坐標原點為O.
(1)求正比例函數與一次函數的解析式;
(2)若一次函數交與y軸于點C,求△ACO的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=6,BC=8,點O在對角線AC上,且OA=OB=OC,點P是邊CD上的一個動點,連接OP,過點O作OQ⊥OP,交BC于點Q.
(1)求OB的長度;
(2)設DP= x,CQ= y,求y與x的函數表達式(不要求寫自變量的取值范圍);
(3)若OCQ是等腰三角形,求CQ的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將邊長為的正方形的邊長增加,得到一個邊長為的正方形.在圖1的基礎上,某同學設計了一個解釋驗證的方案(詳見方案1)
方案1.如圖2,用兩種不同的方式表示邊長為的正方形的面積.
方式1:
方式2:
因此,
(1)請模仿方案1,在圖1的基礎上再設計一種方案,用以解釋驗證;
(2)如圖3,在邊長為的正方形紙片上剪掉邊長為的正方形,請在此基礎上再設計一個方案用以解釋驗證.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E是邊CD上一點,將△ADE沿AE折疊至處,與CE交于點F,若∠B=52°,∠DAE=20°,則的度數為( )
A. 40° B. 36° C. 50° D. 45°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=ax2+bx+c的頂點為D(﹣1,2),與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結論:①b2﹣4ac<0;②當x>﹣1時,y隨x增大而減小;③a+b+c<0;④若方程ax2+bx+c﹣m=0沒有實數根,則m>2; ⑤3a+c<0.其中正確結論的個數是( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com