在圖1中,正方形ABCD的邊長為a,等腰直角三角形FAE的斜邊AE=2b,且邊AD和AE在同一直線上.
當(dāng)2b<a時,如圖1,在BA上選取點G,使BG=b,連接FG和CG,裁掉△FAG和△CGB,可以發(fā)現(xiàn):如果先將△FAG繞點F逆時針旋轉(zhuǎn)90°到△FEH的位置,那么△CGB恰可以拼接到△CHD的位置.且拼接成的新四邊形FGCH恰是正方形.
(Ⅰ)請你類比圖1的剪拼方法,在圖2(a<2b<2a)中畫出剪拼成一個新正方形的示意圖.
(Ⅱ)當(dāng)b>a時,如圖3的圖形能否剪拼成一個正方形?若能,請你在圖中畫出剪拼的示意圖;若不能,簡要說明理由   
【答案】分析:(Ⅰ)應(yīng)采用類比的方法,使AG=EH,F(xiàn)G=GC進(jìn)而得出答案;
(Ⅱ)應(yīng)采用類比的方法,使AG=EH,F(xiàn)G=GC進(jìn)而得出答案,注意無論等腰直角三角形的大小如何變化,BG永遠(yuǎn)等于等腰直角三角形斜邊的一半.
解答:解:(Ⅰ)如圖所示:剪拼方法如圖2,

(Ⅱ)如圖所示:剪拼方法如圖3,
注:圖3用其它剪拼方法能拼接成面積為a2+b2的正方形均給分.

點評:本題考查學(xué)生的推理論證能力和動手操作能力;運用類比方法作圖時,應(yīng)根據(jù)范例抓住作圖的關(guān)鍵:作的線段的長度與某條線段的比值,旋轉(zhuǎn)的三角形,連接的點都應(yīng)是相同的.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如果正方形網(wǎng)格中的每一個小正方形邊長都是1,則每個小格的頂點叫做格點.
(1)在圖1中,以格點為頂點畫一個三角形,使三角形的三邊長分別為3、
5
、2
2
;
(2)在圖2中,線段AB的端點在格點上,請畫出以AB為一邊的三角形,使這個三角形的面積為6;(要求至少畫出3個);
(3)在圖3中,△MNP的頂點M、N在格點上,P在小正方形的邊上,問這個三角形的面積相當(dāng)于多少個小方格的面積?在你解出答案后,說說你的解題方法.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖12所示的8×8網(wǎng)格中,每個小正方形邊長均為1,以這些小正方形的頂點為頂點的三角形稱為格點三角形
【小題1】在圖12中以線段AB為一邊,點P為頂點且面積為6的格點三角形共有       個;

【小題2】請你選擇(1)中的一個點P為位似中心,在圖12中畫出格點△A′B′P,使
△ABP與△A′B′P的位似比為2:1
【小題3】求tan∠PB′A′的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年吉林鎮(zhèn)賚鎮(zhèn)賚鎮(zhèn)中學(xué)九年級下第一次綜合測試數(shù)學(xué)試卷(帶解析) 題型:解答題

在正方形ABCD中,過點A引射線AH,交邊CD于點H(點H與點D不重合).通過翻折,使點B落在射線AH上的點G處,折痕AE交BC于E,延長EG交CD于F.
【感知】如圖1,當(dāng)點H與點C重合時,可得FG=FD.

【探究】如圖2,當(dāng)點H為邊CD上任意一點時,猜想FG與FD的數(shù)量關(guān)系,并說明理由.

【應(yīng)用】在圖2中,當(dāng)AB=5,BE=3時,利用探究結(jié)論,求FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆河北石家莊初中畢業(yè)班教學(xué)質(zhì)量檢測數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖12所示的8×8網(wǎng)格中,每個小正方形邊長均為1,以這些小正方形的頂點為頂點的三角形稱為格點三角形
【小題1】在圖12中以線段AB為一邊,點P為頂點且面積為6的格點三角形共有       個;

【小題2】請你選擇(1)中的一個點P為位似中心,在圖12中畫出格點△A′B′P,使
△ABP與△A′B′P的位似比為2:1
【小題3】求tan∠PB′A′的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆吉林鎮(zhèn)賚鎮(zhèn)賚鎮(zhèn)中學(xué)九年級下第一次綜合測試數(shù)學(xué)試卷(解析版) 題型:解答題

在正方形ABCD中,過點A引射線AH,交邊CD于點H(點H與點D不重合).通過翻折,使點B落在射線AH上的點G處,折痕AE交BC于E,延長EG交CD于F.

【感知】如圖1,當(dāng)點H與點C重合時,可得FG=FD.

【探究】如圖2,當(dāng)點H為邊CD上任意一點時,猜想FG與FD的數(shù)量關(guān)系,并說明理由.

【應(yīng)用】在圖2中,當(dāng)AB=5,BE=3時,利用探究結(jié)論,求FG的長.

 

查看答案和解析>>

同步練習(xí)冊答案