【題目】已知拋物線y=x2﹣2kx+3k+4.
(1)拋物線經(jīng)過原點(diǎn)時(shí),求k的值.
(2)頂點(diǎn)在x軸上時(shí),求k的值;
(3)頂點(diǎn)在y軸上時(shí),求k的值;
【答案】(1)k=﹣;(2)k=4或k=﹣1;(3)k=0
【解析】
(1)把(0,0)代入解析式即可求解;
(2)根據(jù)頂點(diǎn)在x軸上得到b2﹣4ac=0,代入即可求解;
(3)根據(jù)頂點(diǎn)在y軸上得到﹣2k=0,
(1)∵拋物線y=x2﹣2kx+3k+4經(jīng)過原點(diǎn),把(0,0)代入得3k+4=0,
解得:k=﹣ .
(2)∵拋物線y=x2﹣2kx+3k+4頂點(diǎn)在x軸上,
∴b2﹣4ac=0,
∴(﹣2k)2﹣4×1×(3k+4)=0,
解得:k=4或k=﹣1;
(3)∵拋物線y=x2﹣2kx+3k+4頂點(diǎn)在y軸上,
∴﹣2k=0,
解得:k=0
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下文并解答問題:
(1)小麗袋子中卡片上分標(biāo)有1,2,3,4;小兵袋子中卡片上分別標(biāo)有1,2,3.分別用a、b表示小冬從小麗、小兵袋子中抽出的卡片上標(biāo)有的數(shù)字,請(qǐng)用樹狀圖法或列表法寫出(a,b)的所有取值情況;
(2)求a>b概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品的進(jìn)價(jià)為每件40元,售價(jià)每件不低于60元且每件不高于80元.當(dāng)售價(jià)為每件60元是,每個(gè)月可賣出100件;如果每件商品的售價(jià)每上漲1元,則每個(gè)月少賣2件.設(shè)每件商品的售價(jià)為元(為正整數(shù)),每個(gè)月的銷售利潤為元.
(1)求與的函數(shù)關(guān)系式并直接寫出自變量的取值范圍;
(2)每件商品的售價(jià)定為多少元時(shí),每個(gè)月可獲得最大利潤?最大的月利潤是多少元?
(3)當(dāng)每件商品定價(jià)為多少元使得每個(gè)月的利潤恰為2250元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,AB=AC,AD⊥BC,垂足為點(diǎn)D,以AD為對(duì)角線作正方形AEDF,DE交AB于點(diǎn)M,DF交AC于點(diǎn)N,連結(jié)EF,EF分別交AB、AD、AC于點(diǎn)G、點(diǎn)O、點(diǎn)H.
(1)求證:EG=HF;
(2)當(dāng)∠BAC=60°時(shí),求的值;
(3)設(shè),△AEH和四邊形EDNH的面積分別為S1和S2,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下說法合理的是( 。
A. 小明做了3次擲圖釘?shù)膶?shí)驗(yàn),發(fā)現(xiàn)2次釘尖朝上,由此他說釘尖朝上的概率是
B. 某彩票的中獎(jiǎng)概率是5%,那么買100張彩票一定有5張中獎(jiǎng)
C. 某射擊運(yùn)動(dòng)員射擊一次只有兩種可能的結(jié)果:中靶與不中靶,所以他擊中靶的概率是
D. 小明做了3次擲均勻硬幣的實(shí)驗(yàn),其中有一次正面朝上,2次正面朝下,他認(rèn)為再擲一次,正面朝上的概率還是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣(2m﹣1)x+m2+1=0有兩個(gè)不相等實(shí)數(shù)根x1,x2
(1)求實(shí)數(shù)m的取值范圍;
(2)若x12+x22=x1x2+3時(shí),求實(shí)數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形OABC的一邊OA在x軸的負(fù)半軸上,O是坐標(biāo)原點(diǎn),tan∠AOC=,反比例函數(shù)y=﹣的圖象經(jīng)過點(diǎn)C,與AB交與點(diǎn)D,則△COD的面積的值等于_____;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是△ABC的角平分線,過點(diǎn)D作DE∥BC交AB于點(diǎn)E,DF∥AB交BC于點(diǎn)F.
(1)求證:四邊形BEDF為菱形;
(2)如果∠A=90°,∠C=30°,BD=6,求菱形BEDF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將兩塊大小相同的含30°角的直角三角板(=30°)按圖1的方式放置,固定三角板ABC然后將三角板ABC繞直角頂點(diǎn)C順時(shí)針方向旋轉(zhuǎn)(旋轉(zhuǎn)角小于90°)至圖2所示的位置,AB與AC交于點(diǎn)E,AC與AB交于點(diǎn)F,AB與AB交于點(diǎn)O.
(1)求證:;
(2)當(dāng)旋轉(zhuǎn)角等于30°時(shí),AB與AB垂直嗎?請(qǐng)說明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com