(2008•莆田)如圖,大正方形網(wǎng)格是由16個邊長為1的小正方形組成,則圖中陰影部分的面積是   
【答案】分析:根據(jù)已知條件,仔細觀察將陰影部分分為△AEF與梯形ACDE的面積的和,再根據(jù)三角形和梯形的面積公式,即可求得其面積.
解答:解:陰影部分可分為△AEF的面積與梯形ACDE的面積.
∴陰影部分的面積=×4×2+×(4+2)×2=10.
故答案為10.
點評:本題主要考查對圖形的觀察能力,陰影部分可以分為三個三角形和一個矩形來求面積.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2010年湖北省黃岡市數(shù)學中考精品試卷之四(解析版) 題型:解答題

(2008•莆田)如圖:拋物線經(jīng)過A(-3,0)、B(0,4)、C(4,0)三點.
(1)求拋物線的解析式.
(2)已知AD=AB(D在線段AC上),有一動點P從點A沿線段AC以每秒1個單位長度的速度移動;同時另一個動點Q以某一速度從點B沿線段BC移動,經(jīng)過t秒的移動,線段PQ被BD垂直平分,求t的值;
(3)在(2)的情況下,拋物線的對稱軸上是否存在一點M,使MQ+MC有最小值?若存在,請求出點M的坐標;若不存在,請說明理由.(注:拋物線y=ax2+bx+c的對稱軸為x=-

查看答案和解析>>

科目:初中數(shù)學 來源:2009年湖北省黃石市陽新縣太子中學中考模擬數(shù)學試卷(3)(解析版) 題型:解答題

(2008•莆田)如圖:拋物線經(jīng)過A(-3,0)、B(0,4)、C(4,0)三點.
(1)求拋物線的解析式.
(2)已知AD=AB(D在線段AC上),有一動點P從點A沿線段AC以每秒1個單位長度的速度移動;同時另一個動點Q以某一速度從點B沿線段BC移動,經(jīng)過t秒的移動,線段PQ被BD垂直平分,求t的值;
(3)在(2)的情況下,拋物線的對稱軸上是否存在一點M,使MQ+MC有最小值?若存在,請求出點M的坐標;若不存在,請說明理由.(注:拋物線y=ax2+bx+c的對稱軸為x=-

查看答案和解析>>

科目:初中數(shù)學 來源:2009年廣東省湛江市中考數(shù)學模擬試卷(解析版) 題型:解答題

(2008•莆田)如圖:拋物線經(jīng)過A(-3,0)、B(0,4)、C(4,0)三點.
(1)求拋物線的解析式.
(2)已知AD=AB(D在線段AC上),有一動點P從點A沿線段AC以每秒1個單位長度的速度移動;同時另一個動點Q以某一速度從點B沿線段BC移動,經(jīng)過t秒的移動,線段PQ被BD垂直平分,求t的值;
(3)在(2)的情況下,拋物線的對稱軸上是否存在一點M,使MQ+MC有最小值?若存在,請求出點M的坐標;若不存在,請說明理由.(注:拋物線y=ax2+bx+c的對稱軸為x=-

查看答案和解析>>

科目:初中數(shù)學 來源:2008年福建省莆田市中考數(shù)學試卷(網(wǎng)絡(luò)卷)(解析版) 題型:解答題

(2008•莆田)如圖:拋物線經(jīng)過A(-3,0)、B(0,4)、C(4,0)三點.
(1)求拋物線的解析式.
(2)已知AD=AB(D在線段AC上),有一動點P從點A沿線段AC以每秒1個單位長度的速度移動;同時另一個動點Q以某一速度從點B沿線段BC移動,經(jīng)過t秒的移動,線段PQ被BD垂直平分,求t的值;
(3)在(2)的情況下,拋物線的對稱軸上是否存在一點M,使MQ+MC有最小值?若存在,請求出點M的坐標;若不存在,請說明理由.(注:拋物線y=ax2+bx+c的對稱軸為x=-

查看答案和解析>>

科目:初中數(shù)學 來源:2008年福建省莆田市中考數(shù)學試卷(解析版) 題型:解答題

(2008•莆田)如圖,拋物線c1:y=x2-2x-3與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C.點P為線段BC上一點,過點P作直線l⊥x軸于點F,交拋物線c1點E.
(1)求A、B、C三點的坐標;
(2)當點P在線段BC上運動時,求線段PE長的最大值;
(3)當PE為最大值時,把拋物線c1向右平移得到拋物線c2,拋物線c2與線段BE交于點M,若直線CM把△BCE的面積分為1:2兩部分,則拋物線c1應(yīng)向右平移幾個單位長度可得到拋物線c2

查看答案和解析>>

同步練習冊答案