(2009•賀州)如圖,BD是矩形ABCD的對(duì)角線.
(1)請(qǐng)用尺規(guī)作圖:作△BC′D與△BCD關(guān)于矩形ABCD的對(duì)角線BD所在的直線對(duì)稱(要求:在原圖中作圖,不寫作法,不證明,保留作圖痕跡).
(2)若矩形ABCD的邊AB=5,BC=12,(1)中BC′交AD于點(diǎn)E,求線段BE的長.

【答案】分析:(1)即從C點(diǎn)向BD引垂線并延長,相同的距離,找到點(diǎn)C′順次連接三點(diǎn)組成三角形.
(2)主要是根據(jù)軸對(duì)稱圖形,找出圖形中的邊的關(guān)系,利用勾股定理來求線段的長.
解答:解:
(1)方法一:作BC′=BC,DC′=DC.
方法二:作∠C′BD=∠CBD,取BC′=BC,連接DC′.
方法三:作∠C′DB=∠CDB,取DC′=DC,連接BC′.
方法四:作C′與C關(guān)于BD對(duì)稱,連接BC′、DC′.
以上各種方法所得到的△BDC′都是所求作的三角形.
只要考生尺規(guī)作圖正確,痕跡清晰都給(3分).

(2)∵△C′BD與△CBD關(guān)于BD對(duì)稱,
∴∠EBD=∠CBD.
又∵矩形ABCD的AD∥BC,
∴∠EDB=∠CBD.
∴∠EBD=∠EDB,BE=DE.
在Rt△ABE中,AB2+AE2=BE2,而AB=5,BC=12,
∴52+(12-BE)2=BE2(5分)
解得BE=
∴所求線段BE的長是.(6分)
點(diǎn)評(píng):本題是一道綜合應(yīng)用軸對(duì)稱圖形的題,難度較大,但學(xué)生只要把握了軸對(duì)稱圖形的性質(zhì),還是可以做出來的.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2009•賀州)如圖,拋物線y=-x2-x+2的頂點(diǎn)為A,與y軸交于點(diǎn)B.
(1)求點(diǎn)A、點(diǎn)B的坐標(biāo);
(2)若點(diǎn)P是x軸上任意一點(diǎn),求證:PA-PB≤AB;
(3)當(dāng)PA-PB最大時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年廣西賀州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•賀州)如圖,拋物線y=-x2-x+2的頂點(diǎn)為A,與y軸交于點(diǎn)B.
(1)求點(diǎn)A、點(diǎn)B的坐標(biāo);
(2)若點(diǎn)P是x軸上任意一點(diǎn),求證:PA-PB≤AB;
(3)當(dāng)PA-PB最大時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《圖形的相似》(02)(解析版) 題型:填空題

(2009•賀州)如圖,正方形ABCD的邊長為1cm,E、F分別是BC、CD的中點(diǎn),連接BF、DE,則圖中陰影部分的面積是    cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《圖形的相似》(02)(解析版) 題型:選擇題

(2009•賀州)如圖,點(diǎn)A,B分別在射線OM,ON上,C,D分別是線段OA和OB上的點(diǎn),以O(shè)C,OD為鄰邊作平行四邊形OCED,下面給出三種作法的條件:①取OC=OA,OD=OB;②取OC=OA,OD=OB;③取OC=OA,OD=OB.能使點(diǎn)E落在陰影區(qū)域內(nèi)的作法有( )

A.①
B.①②
C.①②③
D.②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年廣西賀州市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2009•賀州)如圖,設(shè)點(diǎn)P是函數(shù)y=在第一象限圖象上的任意一點(diǎn),點(diǎn)P關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為P′,過點(diǎn)P作直線PA平行于y軸,過點(diǎn)P′作直線P′A平行于x軸,PA與P′A相交于點(diǎn)A,則△PAP′的面積為   

查看答案和解析>>

同步練習(xí)冊(cè)答案