【題目】如圖,在ABC中,ACB=90,AC=BC=1E、F為線段AB上兩動(dòng)點(diǎn),且ECF=45°,過(guò)點(diǎn)EF分別作BC、AC的垂線相交于點(diǎn)M,垂足分別為HG.現(xiàn)有以下結(jié)論:AB=;當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),MH=;AF+BE=EFMGMH=,其中正確結(jié)論的個(gè)數(shù)是( )

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

解:

①∵在ABC中,ACB=90,AC=BC=1

AB=(所以①正確)

如圖1,當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),點(diǎn)H與點(diǎn)B重合,

MBBC,MBC=90°,

MGAC,

∴∠MGC=90°=C=MBC,

MGBC,四邊形MGCB是矩形,

MH=MB=CG,

∵∠FCE=45°=ABC,A=ACF=45°,

CE=AF=BF,

FG是ACB的中位線,

GC=AC=MH,故正確;

如圖2所示,

AC=BC,ACB=90°,

∴∠A=5=45°.

ACF順時(shí)針旋轉(zhuǎn)90°至BCD,

則CF=CD,1=4,A=6=45°;BD=AF;

∵∠2=45°,

∴∠1+3=3+4=45°,

∴∠DCE=2.

ECF和ECD中,

,

∴△ECF≌△ECD(SAS),

EF=DE.

∵∠5=45°,

∴∠BDE=90°,

DE2=BD2+BE2,即E2=AF2+BE2,故錯(cuò)誤;

④∵∠7=1+A=1+45°=1+2=ACE,

∵∠A=5=45°,

∴△ACE∽△BFC,

=,

AFBF=ACBC=1,

由題意知四邊形CHMG是矩形,

MGBC,MH=CG,

MGBC,MHAC,

=;=,

=;=,

MG=AE;MH=BF,

MGMH=AE×BF=AEBF=ACBC=

正確.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知m+n=7,點(diǎn)A(mn)在一個(gè)反比例函數(shù)的圖象上,點(diǎn)A與坐標(biāo)原點(diǎn)的距離為5,現(xiàn)將這個(gè)反比例函數(shù)圖象繞原點(diǎn)順時(shí)針旋轉(zhuǎn)90o,得到一個(gè)新的反比例函數(shù)圖象,則這個(gè)新的反比例函數(shù)的解析式是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1、圖2,△AOB,△COD均是等腰直角三角形,∠AOB=∠COD=90°,

(1)在圖1中,ACBD相等嗎?請(qǐng)說(shuō)明理由;

(2)若△COD繞點(diǎn)O順時(shí)針旋轉(zhuǎn)一定角度后,到達(dá)圖2的位置,請(qǐng)問(wèn)ACBD還相等嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB兩點(diǎn)的坐標(biāo)分別為(―2,0,01),⊙C的圓心坐標(biāo)為(0,―1),半徑為1.若D是⊙C上的一個(gè)動(dòng)點(diǎn),射線ADy軸交于點(diǎn)E,則△ABE面積的最大值是( )

A. 4 B. C. D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(問(wèn)題提出)

“不以規(guī)矩,不能成方圓.”——孟子;“圓,一中同長(zhǎng)也.”——墨經(jīng).

1)圓,一中同長(zhǎng)也.”體現(xiàn)了古代先哲對(duì)“圓”定義的思考,請(qǐng)用現(xiàn)代文翻譯:____

(初步思考)

圓規(guī)是我們初中幾何學(xué)習(xí)不可或缺的工具,用圓規(guī)不僅可以畫(huà)圓、畫(huà)弧,還可以畫(huà)弧與弧的交點(diǎn),利用這一特征可以構(gòu)造很多圖形,如:

2)角平分線:如圖1只用圓規(guī)在∠AOB中畫(huà)出一點(diǎn)P使得點(diǎn)P在∠AOB的角平分線上;對(duì)稱(chēng)點(diǎn):如圖2只用圓規(guī)畫(huà)出點(diǎn)P關(guān)于直線l的對(duì)稱(chēng)點(diǎn)Q,并說(shuō)明理由.

(操作與應(yīng)用)

3)已知點(diǎn)A、直線l.在圖3只用圓規(guī)在直線l上畫(huà)出兩點(diǎn)B、C,使得A、BC恰好是等腰三角形的3個(gè)頂點(diǎn),(畫(huà)出一個(gè)并寫(xiě)出相等線段即可):

已知點(diǎn)P、直線l.在圖4只用圓規(guī)畫(huà)出一點(diǎn)Q,使得點(diǎn)P、Q所在的直線與直線l平行.(提示:平行四邊形對(duì)邊平行).

4)已知點(diǎn)O、A、B,只用圓規(guī)畫(huà)出半徑為AB的⊙O與點(diǎn)A、B所在直線的交點(diǎn)CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】

1)如圖1,在RtABC中,ABC=90°,以點(diǎn)B為中心,把ABC逆時(shí)針旋轉(zhuǎn)90°,得到A1BC1;再以點(diǎn)C為中心,把ABC順時(shí)針旋轉(zhuǎn)90°,得到A2B1C,連接C1B1,則C1B1BC的位置關(guān)系為_______

2)如圖2,當(dāng)ABC是銳角三角形,ABC=αα≠60°)時(shí),將ABC按照(1)中的方式旋轉(zhuǎn)α,連接C1B1,探究C1B1BC的位置關(guān)系,寫(xiě)出你的探究結(jié)論,并加以證明;

3)如圖3,在圖2的基礎(chǔ)上,連接B1B,若C1B1=BC,C1BB1的面積為4,則B1BC的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,ABC = 90°,BC = 1,AC =

1以點(diǎn)B為旋轉(zhuǎn)中心,將ABC沿逆時(shí)針?lè)较?/span>旋轉(zhuǎn)90°得到ABC′,請(qǐng)畫(huà)出變換后的圖形;

2求點(diǎn)A和點(diǎn)A′之間的距離

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,以AB為直徑的⊙O與BC交于點(diǎn)D,與AC交于點(diǎn)F,過(guò)點(diǎn)D作⊙O的切線交AC于E.

(1)求證:AD2=ABAE;

(2)若AD=2,AF=3,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對(duì)的圓周角的度數(shù)是( 。

A. 30° B. 60° C. 30°150° D. 60°120°

查看答案和解析>>

同步練習(xí)冊(cè)答案