如圖,拋物線m:y=-(x+h)2+k與x軸的交點為A、B,與y軸的交點為C,頂點為M(3,),將拋物線m繞點B旋轉(zhuǎn)180°,得到新的拋物線n,它的頂點為D;
(1)求拋物線n的解析式;
(2)設(shè)拋物線n與x軸的另一個交點為E,點P是線段ED上一個動點(P不與E、D重合),過點P作y軸的垂線,垂足為F,連接EF.如果P點的坐標為(x,y),△PEF的面積為S,求S與x的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求出S的最大值;
(3)設(shè)拋物線m的對稱軸與x軸的交點為G,以G為圓心,A、B兩點間的距離為直徑作⊙G,試判斷直線CM與⊙G的位置關(guān)系,并說明理由.

【答案】分析:(1)本問涉及拋物線的旋轉(zhuǎn)變換,首先求出B點坐標,再由點D、M關(guān)于點B成中心對稱,求出D點的坐標,從而得到拋物線n的解析式;注意由于開口方向相反,兩個拋物線的a值也相反;
(2)本問可依次確定S的關(guān)系式、自變量x的取值范圍,最后求出最大值.注意:①欲求S的關(guān)系式,首先需要用待定系數(shù)法求出直線DE的解析式;②求得關(guān)系式S=-(x-9)2+后確定最大值時,不能簡單套用“當x=9時,最大值為…”,這樣就錯了,因為x=9不在自變量的取值范圍內(nèi);
(3)本問結(jié)論:直線CM與⊙G相切.結(jié)合題意,欲證明直線CM與⊙G相切,需要完成兩個步驟:①證明點C在⊙G上,②證明CM垂直于半徑GC.
解答:解:(1)依題意,拋物線m的解析式為:y=-(x-3)2+=-(x-8)(x+2),
∴A(-2,0),B(8,0).
由旋轉(zhuǎn)性質(zhì)可知,點D與點M(3,)關(guān)于點B(8,0)成中心對稱,
∴D(13,-),
∴拋物線n的解析式為:y=(x-13)2-

(2)∵拋物線n:y=(x-13)2-=(x-8)(x-18),∴E點坐標為(18,0).
設(shè)直線DE的解析式為y=kx+b,則有:
,解得k=,b=-,
∴直線DE的解析式為:y=x-
如題圖所示,S=PF•OF=x•(-y)=-x•(x-)=-(x-9)2+;
∵點P是線段ED上一個動點(P不與E、D重合),∴13<x<18;
∴S=-(x-9)2+(13<x<18),
可見該拋物線開口向下,對稱軸為x=9,函數(shù)圖象位于對稱軸右側(cè),y隨著x的增大而減小,故S在13<x<18范圍內(nèi)沒有最大值.
所以S與x的函數(shù)關(guān)系式為S=-(x-9)2+,自變量取值范圍是13<x<18,S沒有最大值.

(3)結(jié)論:直線CM與⊙G相切.理由如下:
∵拋物線m的解析式為:y=-(x-3)2+,令x=0,解得y=4,∴C(0,4).
在Rt△COG中,由勾股定理得:CG===5,
又∵⊙G半徑為5,∴點C在⊙G上.
如右圖所示,依題意作出⊙G,連接CG、CM、MG,過點C作CH⊥MG于點H,則CH=3,HG=4,MH=-4=,
,CH⊥MG,
∴△CHG∽△MHC,∴∠MCH=∠CGH;
又∠HCG+∠CGH=90°,∴∠HCG+∠MCH=90°,即GC⊥MC.
(注:此處亦可用勾股定理的逆定理證明△MCG為直角三角形)
綜上所述,點C在⊙G上,且滿足GC⊥MC,
∴直線CM與與⊙G相切.
點評:本題綜合考查了二次函數(shù)的圖象與性質(zhì)、圖形變換、極值、相似三角形的判定與性質(zhì)、勾股定理以及圓與直線的位置關(guān)系等知識點,有一定的難度.第(2)問中,考查二次函數(shù)在指定區(qū)間上的極值,這是本題的一個易錯點,需要引起注意.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,拋物線C1,C2關(guān)于x軸對稱;拋物線C1,C3關(guān)于y軸對稱.拋物線C1,C2,C3與x軸相交于A、B、C、D四點;與y相交于E、F兩點;H、G、M分別為拋物線C1,C2,C3的頂點.HN垂直于x軸,垂足為N,且|OE|>|HN|,|AB|≠|(zhì)HG|
(1)A、B、C、D、E、F、G、H、M9個點中,四個點可以連接成一個四邊形,請你用字母寫出下列特殊四邊形:菱形
AHBG
;等腰梯形
HGEF
;平行四邊形
EGFM
;梯形
DMHC
;(每種特殊四邊形只能寫一個,寫錯、多寫記0分)
(2)證明其中任意一個特殊四邊形;
(3)寫出你證明的特殊四邊形的性質(zhì).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,拋物線交x軸于點A(-2,0),點B(4,0),交y軸于點C(0,4).
(1)求拋物線的解析式,并寫出頂點D的坐標;
(2)若直線y=x交拋物線于M,N兩點,交拋物線的對稱軸于點E,連接BC,EB,EC.試判斷△EBC的形狀,并加以證明;
(3)設(shè)P為直線MN上的動點,過P作PF∥ED交直線MN上方的拋物線于點F.問:在直線MN上是否存在點P,使得以P,E,D,F(xiàn)為頂點的四邊形是平行四邊形?若存在,請求出點P及相應的點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,拋物線的頂點坐標為M(1,4),與x軸的一個交點是A(-1,0),與y軸交于點B,直線x=1交x軸于點N.
(1)求拋物線的解析式及點B的坐標;
(2)求經(jīng)過B、M兩點的直線的解析式,并求出此直線與x軸的交點C的坐標;
(3)若點P在拋物線的對稱軸x=1上運動,請你探索:在x軸上方是否存在這樣的P點,使精英家教網(wǎng)以P為圓心的圓經(jīng)過點A,并且與直線BM相切?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,拋物線y=ax2+bx+c交x軸于點A(-3,0),點B(1,0),交y軸于點E(0,-3)精英家教網(wǎng).點C是點A關(guān)于點B的對稱點,點F是線段BC的中點,直線l過點F且與y軸平行.直線y=-x+m過點C,交y軸于D點.
(1)求拋物線的函數(shù)表達式;
(2)點K為線段AB上一動點,過點K作x軸的垂線與直線CD交于點H,與拋物線交于點G,求線段HG長度的最大值;
(3)在直線l上取點M,在拋物線上取點N,使以點A,C,M,N為頂點的四邊形是平行四邊形,求點N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,拋物線y=ax2+bx+c(a≠0)與x軸兩交點是A(-1,0),B(3,0),則如圖可知y<0時,x的取值范圍是( 。
A、-1<x<3B、3<x<-1C、x>-1或x<3D、x<-1或x>3

查看答案和解析>>

同步練習冊答案