【題目】如圖,△ABC是一塊銳角三角形余料,邊BC=120mm,高AD=80mm,要把它加工成正方形零件PQMN,使正方形PQMN的邊QMBC上,其余兩個項點P,N分別在AB,AC上.求這個正方形零件PQMN面積S.

【答案】正方形零件PQMN面積是2304mm2.

【解析】試題分析:PNAD交于點E,如圖,設(shè)MN=xmm,則AE=ADED=80x,再證明APN∽△ABC,利用相似比可表示出PN=80x),根據(jù)正方形的性質(zhì)得到80x=x,然后結(jié)合正方形的面積公式進行解答即可.

試題解析:PN與AD交于點E,如圖,設(shè)MN=xmm,

易得四邊形MNED為矩形,則ED=MN=x,

∴AE=AD﹣ED=80﹣x,

∵PN∥BC,

∴△APN∽△ABC,

,即 ,

PN=80x),

∵PN=MN,

80x=x

解得x=48,

故正方形零件PQMN面積S為:48×48=2304(mm2),

答:正方形零件PQMN面積S2304mm2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是小明的爸爸騎一輛摩托車從家里出發(fā),離家的距離(千米)隨行駛時間(分)的變化而變化的情況:

1)圖象表示了哪兩個變量之間的關(guān)系?哪個是自變量?哪個是因變量?

2)小明的爸爸從出發(fā)到最后停止共經(jīng)過了多少分鐘?離家最遠的距離是多少千米?

3)摩托車在哪一段時間內(nèi)速度最快?最快速度是多少千米/小時?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:

對于線段的垂直平分線我們有如下結(jié)論:到線段兩個端點距離相等的點在線段的垂直平分線上.即如圖,若PAPB,則點P在線段AB的垂直平分線上.

請根據(jù)閱讀材料,解決下列問題:

如圖,直線CD是等邊ABC的對稱軸,點DAB上,點E是線段CD上的一動點(點E不與點C、D重合),連結(jié)AEBE,ABE經(jīng)順時針旋轉(zhuǎn)后與BCF重合.

1)旋轉(zhuǎn)中心是點   ,旋轉(zhuǎn)了   (度);

2)當點E從點D向點C移動時,連結(jié)AF,設(shè)AFCD交于點P,在圖中將圖形補全,并探究APC的大小是否保持不變?若不變,請求出APC的度數(shù);若改變,請說出變化情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用A、B兩種機器人搬運大米,A型機器人比B型機器人每小時多搬運20袋大米,A型機器人搬運700袋大米與B型機器人搬運500袋大米所用時間相等.求A、B型機器人每小時分別搬運多少袋大米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1如圖1,已知:在ABC中,BAC90°,AB=AC,直線m經(jīng)過點A,BD直線m, CE直線m,垂足分別為點D、E.證明:DE=BD+CE.

2 如圖2,將1中的條件改為:在ABC中,AB=AC,DA、E三點都在直線m,并且有BDA=AEC=BAC=,其中為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

3拓展與應(yīng)用:如圖3D、EDA、E三點所在直線m上的兩動點(DA、E三點互不重合),FBAC平分線上的一點,ABFACF均為等邊三角形,連接BDCE,BDA=AEC=BAC,試判斷DEF的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=36°,∠C=76°,ADAF分別是△ABC的角平分線和高,求∠DAF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABDACD關(guān)于直線AD對稱;在射線AD上取點E,連接BE, CE,如圖:在射線AD上取點F連接BF, CF,如圖,依此規(guī)律,第n個圖形中全等三角形的對數(shù)是(

A.nB.2n-1C.D.3(n+1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的方格紙中,每個小正方形的邊長為均為格點(格點是指每個小正方形的頂點)

標出格點使線段;

標出格點,使邊上的高;

的距離為

的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校計劃購買籃球、排球共20個,購買2個籃球,3個排球,共需花費190元;購買3個籃球的費用與購買5個排球的費用相同。

(1)籃球和排球的單價各是多少元?

(2)若購買籃球不少于8個,所需費用總額不超過800元.請你求出滿足要求的所有購買方案,并直接寫出其中最省錢的購買方案

查看答案和解析>>

同步練習(xí)冊答案