如圖,菱形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F分別是邊AB,AD的中點(diǎn).
(1)請(qǐng)判斷△OEF的形狀,并證明你的結(jié)論;
(2)若AB=13,AC=10,請(qǐng)求出線段EF的長.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
命題“關(guān)于x的一元二次方程,必有實(shí)數(shù)解.”是假命題.則在下列選項(xiàng)中,可以作為反例的是( 。
A.b=﹣3 B.b=﹣2 C.b=﹣1 D.b=2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
謝爾賓斯基地毯,最早是由波蘭數(shù)學(xué)家謝爾賓斯基制作出來的:把一個(gè)正三角形分成全等的4個(gè)小正三角形,挖去中間的一個(gè)小三角形;對(duì)剩下的3個(gè)小正三角形再分別重復(fù)以上做法…將這種做法繼續(xù)進(jìn)行下去,就得到小格子越來越多的謝爾賓斯基地毯(如圖).若圖1中的陰影三角形面積為1,則圖5中的所有陰影三角形的面積之和是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在Rt△ACB和Rt△AEF中,∠ACB=∠AEF=90°,若點(diǎn)P是BF的中點(diǎn),連接PC,PE.
特殊發(fā)現(xiàn):如圖1,若點(diǎn)E,F分別落在邊AB,AC上,則結(jié)論:PC=PE成立(不要求證明).
問題探究:把圖1中的△AEF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn).
(1)如圖2,若點(diǎn)E落在邊CA的延長線上,則上述結(jié)論是否成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說明理由;
(2)如圖3,若點(diǎn)F落在邊AB上,則上述結(jié)論是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說明理由;
(3)記,當(dāng)k為何值時(shí),△CPE總是等邊三角形?(請(qǐng)直接寫出k的值,不必說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
一個(gè)多邊形的每個(gè)內(nèi)角都等于120°,則這個(gè)多邊形的邊數(shù)為( 。
| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
理解:數(shù)學(xué)興趣小組在探究如何求tan15°的值,經(jīng)過思考、討論、交流,得到以下思路:
思路一 如圖1,在Rt△ABC中,∠C=90°,∠ABC=30°,延長CB至點(diǎn)D,使BD=BA,連接AD.設(shè)AC=1,則BD=BA=2,BC=.tanD=tan15°===2﹣.
思路二 利用科普書上的和(差)角正切公式:tan(α±β)=.假設(shè)α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)===2﹣.
思路三 在頂角為30°的等腰三角形中,作腰上的高也可以…
思路四 …
請(qǐng)解決下列問題(上述思路僅供參考).
(1)類比:求出tan75°的值;
(2)應(yīng)用:如圖2,某電視塔建在一座小山上,山高BC為30米,在地平面上有一點(diǎn)A,測(cè)得A,C兩點(diǎn)間距離為60米,從A測(cè)得電視塔的視角(∠CAD)為45°,求這座電視塔CD的高度;
(3)拓展:如圖3,直線y=x﹣1與雙曲線y=交于A,B兩點(diǎn),與y軸交于點(diǎn)C,將直線AB繞點(diǎn)C旋轉(zhuǎn)45°后,是否仍與雙曲線相交?若能,求出交點(diǎn)P的坐標(biāo);若不能,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com