【題目】如圖,二次函數(shù)的圖象經(jīng)過A,B,C三點,點C在y軸正半軸上,已知A(﹣1,0),B(3,0),OC=AB.
(1)求點C的坐標(biāo).
(2)求二次函數(shù)的解析式.
【答案】(1)C點的坐標(biāo)為(0,4);(2)y=﹣x2+x+4.
【解析】
(1)先求出AB,再求出OC,即可得出C的坐標(biāo);
(2)把C的坐標(biāo)代入函數(shù)解析式,即可求出a、b、c的值,即可得出答案.
(1)∵點A的坐標(biāo)為(﹣1,0),點B的坐標(biāo)為(3,0),
∴AB=1+3=4,
∵AB=OC=4,
∴OC=4,
∴C點的坐標(biāo)為(0,4);
(2)設(shè)過A、B、C點的二次函數(shù)的解析式為y=a(x+1)(x﹣3),
把C的坐標(biāo)(0,4)代入得:﹣3a=4,
∴a=﹣,
所以二次函數(shù)的解析式為y=﹣(x2﹣2x﹣3)=﹣x2+x+4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A(﹣1,5),B(0,0),C(4,0),D(2019,m),E(2020,n)在某二次函數(shù)的圖象上.下列結(jié)論:①圖象開口向上;②圖象的對稱軸是直線x=2;③m<n;④當(dāng)0<x<4時,y<0.其中正確的個數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,△ABC的邊AC,BC分別與⊙O交于D,E,若E為的中點.
(1)求證:DE=EC;
(2)若DC=2,BC=6,求⊙O的半徑
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:對于拋物線y=ax2+bx+c(a、b、c是常數(shù),a≠0),若b2=ac,則稱該拋物線為黃金拋物線.例如:y=2x2﹣2x+2是黃金拋物線.
(1)請再寫出一個與上例不同的黃金拋物線的解析式;
(2)若拋物線y=ax2+bx+c(a、b、c是常數(shù),a≠0)是黃金拋物線,請?zhí)骄吭擖S金拋物線與x軸的公共點個數(shù)的情況(要求說明理由);
(3)將黃金拋物線y=2x2﹣2x+2沿對稱軸向下平移3個單位.
①直接寫出平移后的新拋物線的解析式;
②設(shè)①中的新拋物線與y軸交于點A,對稱軸與x軸交于點B,動點Q在對稱軸上,問新拋物線上是否存在點P,使以點P、Q、B為頂點的三角形與△AOB全等?若存在,直接寫出所有符合條件的點P的坐標(biāo);若不存在,請說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 Rt△ABC 中BC=2,以 BC 的中點 O 為圓心的⊙O 分別與 AB,AC 相切于 D,E 兩點,的長為( )
A.B.C.πD.2π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)市委市政府提出的建設(shè)“綠色襄陽”的號召,我市某單位準(zhǔn)備將院內(nèi)一塊長30m,寬20m的長方形空地,建成一個矩形花園.要求在花園中修兩條縱向平行和一條橫向彎折的小道,剩余的地方種植花草,如圖所示,要使種植花草的面積為532m2,那么小道進(jìn)出口的寬度應(yīng)為多少米?(注:所有小道進(jìn)出口的寬度相等,且每段小道均為平行四邊形)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=+b(a、b為常數(shù)且a≠0)中,當(dāng)x=2時,y=4;當(dāng)x=﹣1時,y=1.請對該函數(shù)及其圖象進(jìn)行如下探究:
(1)求該函數(shù)的解析式,并直接寫出該函數(shù)自變量x的取值范圍;
(2)請在下列直角坐標(biāo)系中畫出該函數(shù)的圖象;
(3)請你在上方直角坐標(biāo)系中畫出函數(shù)y=2x的圖象,結(jié)合上述函數(shù)的圖象,寫出不等式+b≤2x的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,,,,于點D,將繞點B順時針旋轉(zhuǎn)得到
如圖2,當(dāng)時,求點C、E之間的距離;
在旋轉(zhuǎn)過程中,當(dāng)點A、E、F三點共線時,求AF的長;
連結(jié)AF,記AF的中點為P,請直接寫出線段CP長度的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的二次函數(shù)的圖象中,劉星同學(xué)觀察得出了下面四條信息:①;②;③;④.你認(rèn)為其中錯誤的有( )個.
A.1B.2
C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com