如圖,Rt△OAB的邊OA在x軸的正半軸上,OB在y軸的正半軸上,雙曲線過AB的中點C,已知點A的坐標為(,0),點B的坐標為(0,1),則該雙曲線的表達式為【    】

    A.         B.         C.        D.


A。

【考點】曲線上點的坐標與方程的關系,三角形中位線定理。

【分析】如圖,過點C作CD⊥OB于點D.

∵雙曲線過AB的中點C,

,解得,k=

∴該雙曲線的表達式為。

故選A。 


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:


操作:小英準備制作一個表面積為6cm2的正方體紙盒,現(xiàn)選用一些廢棄的紙片進行如下設計:

說明:

方案一:圖形中的圓過點A.B.C;

方案二:直角三角形的兩直角邊與展開圖左下角的正方形邊重合,斜邊經過兩個正方形的頂點.

紙片利用率=×100%

發(fā)現(xiàn):(1)小英發(fā)現(xiàn)方案一中的點A.B恰好為該圓一直徑的兩個端點.你認為小英的這個發(fā)現(xiàn)是否正確,請說明理由.

(2)小英通過計算,發(fā)現(xiàn)方案一中紙片的利用率僅約為38.2%.請幫忙計算方案二的利用率,并寫出求解過程.(結果精確到0.1%)

探究:(3)小英感覺上面兩個方案的利用率均偏低,又進行了新的設計(方案三),請直接寫出方案三的利用率.(結果精確到0.1%)

說明:方案三中的每條邊均過其中兩個正方形的頂點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


,且1-ab2≠0,則=          .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


在“老年節(jié)” 前夕,某公司工會組織323名退休職工到浙江杭州旅游,旅游前,工會確定每車保證有一名隨團醫(yī)生,并為此次旅游請了8名醫(yī)生,現(xiàn)打算同時租甲、乙兩種客車,其中甲種客車每輛載客50人,乙種客車每輛載客20人。

(1)請幫助工會設計租車方案。

(2)若甲種客車租金為800元/輛,乙種客車租金為600元/輛,工會按哪種方案租車最省錢?此時租金是多少?

(3)旅游前,一名醫(yī)生由于有特殊情況,工會只能安排7名醫(yī)生隨團,為保證所租的每輛車安排有一名醫(yī)生,租車方案調整為:同時租80座、50座和20座的大小三種客車,出發(fā)時,所租的三種客車的座位恰好坐滿,請問工會的租車方案如何安排?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,已知A點坐標為(5,0),直線與y軸交于點B,∠BCA=60°,連接AB,∠α=105°,則直線的表達式為【    】

A.       B.      C.      D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


 為了預防“非典”,某學校對教室采用藥熏清毒法進行消毒, 已知藥物燃燒時,室內每立方米空氣中的含藥量y(mg)與時間x(min)成正比例.藥物燃燒后,y與x成反比例(如圖所示),現(xiàn)測得藥物8min燃畢,此時室內空氣中每立方米的含藥量為6mg,請根據(jù)題中所提供的信息,解答下列問題:

(1)藥物燃燒時,y關于x 的函數(shù)關系式為: ________, 自變量x 的取值范圍是:_______,藥物燃燒后y關于x的函數(shù)關系式為_______.

(2)研究表明,當空氣中每立方米的含藥量低于1.6mg時學生方可進教室,那么從消毒開始,至少需要經過______分鐘后,學生才能回到教室;

(3)研究表明,當空氣中每立方米的含藥量不低于3mg且持續(xù)時間不低于10min時,才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


在同一直角坐標系下,直線y=x+2與雙曲線的交點的個數(shù)為【    】

  A.0個  B.1個  C.2個  D.不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,已知二次函數(shù)(m>0)的圖象與x軸交于A、B兩點.

(1)寫出A、B兩點的坐標(坐標用m表示);

(2)若二次函數(shù)圖象的頂點P在以AB為直徑的圓上,求二次函數(shù)的解析式;

(3)設以AB為直徑的⊙M與y軸交于C、D兩點,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,⊙O1,⊙O2、相交于A、B兩點,兩圓半徑分別為6cm和8cm,弦AB的長為9.6cm,則兩圓的連心線O1O2的長為【    】

A.11cm       B.10cm       C.9cm       D.8cm

查看答案和解析>>

同步練習冊答案