如圖,拋物線y=ax2+bx+c(a,b,c是常數(shù),a≠0)的對稱軸為y軸,且經(jīng)過(0,0)和(,)兩點,點P在該拋物線上運動,以點P為圓心的⊙P總經(jīng)過定點A(0,2).
(1)求a,b,c的值;
(2)求證:在點P運動的過程中,⊙P始終與x軸相交;
(3)設(shè)⊙P與x軸相交于M(x1,0),N(x2,0)(x1<x2)兩點,當△AMN為等腰三角形時,求圓心P的縱坐標.
(1)a=,b=c=0;(2)證明見解析;(3)P的縱坐標為0或4+2或4﹣2.
解析試題分析:(1)根據(jù)題意得出二次函數(shù)一般形式進而將已知點代入求出a,b,c的值即可;
(2)設(shè)P(x,y),表示出⊙P的半徑r,進而與x2比較得出答案即可;
(3)分別表示出AM,AN的長,進而分別利用當AM=AN時,當AM=MN時,當AN=MN時,求出a的值,進而得出圓心P的縱坐標即可.
試題解析:(1)∵拋物線y=ax2+bx+c(a,b,c是常數(shù),a≠0)的對稱軸為y軸,且經(jīng)過(0,0)和(,)兩點,
∴拋物線的一般式為:y=ax2,
∴=a()2,
解得:a=±,
∵圖象開口向上,∴a=,
∴拋物線解析式為:y=x2,
故a=,b=c=0;
(2)設(shè)P(x,y),⊙P的半徑r=,
又∵y=x2,則r=,
化簡得:r=>x2,
∴點P在運動過程中,⊙P始終與x軸相交;
(3)設(shè)P(a,a2),∵PA=,
作PH⊥MN于H,則PM=PN=,
又∵PH=a2,
則MH=NH==2,
故MN=4,
∴M(a﹣2,0),N(a+2,0),
又∵A(0,2),∴AM=,AN=,
當AM=AN時,=,
解得:a=0,
當AM=MN時,=4,
解得:a=2±2(負數(shù)舍去),則a2=4+2;
當AN=MN時,=4,
解得:a=﹣2±2(負數(shù)舍去),則a2=4﹣2;
綜上所述,P的縱坐標為0或4+2或4﹣2.
考點:二次函數(shù)綜合題.
科目:初中數(shù)學 來源: 題型:填空題
如圖,在邊長10cm為的正方形ABCD中,P為AB邊上任意一點(P不與A、B兩點重合),連結(jié)DP,過點P作PE⊥DP,垂足為P,交BC于點E,則BE的最大長度為 cm。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,已知直線與x軸交于點A,與y軸交于點C,拋物線經(jīng)過點A和點C,對稱軸為直線l:,該拋物線與x軸的另一個交點為B.
(1)求此拋物線的解析式;
(2)點P在直線l上,求出使△PAC的周長最小的點P的坐標;
(3)點M在此拋物線上,點N在y軸上,以A、B、M、N為頂點的四邊形能否為平行四邊形?若能,直接寫出所有滿足要求的點M的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
已知拋物線y=x2﹣(k+2)x+和直線y=(k+1)x+(k+1)2.
(1)求證:無論k取何實數(shù)值,拋物線總與x軸有兩個不同的交點;
(2)拋物線于x軸交于點A、B,直線與x軸交于點C,設(shè)A、B、C三點的橫坐標分別是x1、x2、x3,求x1•x2•x3的最大值;
(3)如果拋物線與x軸的交點A、B在原點的右邊,直線與x軸的交點C在原點的左邊,又拋物線、直線分別交y軸于點D、E,直線AD交直線CE于點G(如圖),且CA•GE=CG•AB,求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖甲,四邊形OABC的邊OA、OC分別在x軸、y軸的正半軸上,頂點在B點的拋物線交x軸于點A、D,交y軸于點E,連結(jié)AB、AE、BE.已知tan∠CBE=,A(3,0),D(-1,0),E(0,3).
(1)求拋物線的解析式及頂點B的坐標;
(2)求證:CB是△ABE外接圓的切線;
(3)試探究坐標軸上是否存在一點P,使以D、E、P為頂點的三角形與△ABE相似,若存在,直接寫出點P的坐標;若不存在,請說明理由;
(4)設(shè)△AOE沿x軸正方向平移t個單位長度(0<t≤3)時,△AOE與△ABE重疊部分的面積為s,求s與t之間的函數(shù)關(guān)系式,并指出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,拋物線y=ax2+bx+c經(jīng)過A(﹣3.0)、C(0,4),點B在拋物線上,CB∥x軸,且AB平分∠CAO.
(1)求拋物線的解析式;
(2)線段AB上有一動點P,過點P作y軸的平行線,交拋物線于點Q,求線段PQ的最大值;
(3)拋物線的對稱軸上是否存在點M,使△ABM是以AB為直角邊的直角三角形?如果存在,求出點M的坐標;如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A、D兩點,并經(jīng)過B點,已知A點坐標是(2,0),B點的坐標是(8,6).
(1)求二次函數(shù)的解析式.
(2)求函數(shù)圖象的頂點坐標及D點的坐標.
(3)該二次函數(shù)的對稱軸交x軸于C點.連接BC,并延長BC交拋物線于E點,連接BD,DE,求△BDE的面積.
(4)拋物線上有一個動點P,與A,D兩點構(gòu)成△ADP,是否存在S△ADP=S△BCD?若存在,請求出P點的坐標;若不存在.請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
己知:二次函數(shù)y=ax2+bx+6(a≠0)與x軸交于A、B兩點(點A在點B的左側(cè))點
A、點B的橫坐標是一元二次方程x2-4x-12=0的兩個根.
(1)請直接寫出點A、點B的坐標.
(2)請求出該二次函數(shù)表達式及對稱軸和頂點坐標.
(3)如圖1,在二次函數(shù)對稱軸上是否存在點P,使△APC的周長最小,若存在,請求出點P的坐標;若不存在,請說明理由.
(4)如圖2,連接AC、BC,點Q是線段0B上一個動點(點Q不與點0、B重合).過點Q作QD∥AC交BC于點D,設(shè)Q點坐標(m,0),當△CDQ面積S最大時,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖1,在等腰△ABC中,底邊BC=8,高AD=2,一動點Q從B點出發(fā),以每秒1個單位的速度沿BC向右運動,到達D點停止;另一動點P從距離B點1個單位的位置出發(fā),以相同的速度沿BC向右運動,到達DC中點停止;已知P、Q同時出發(fā),以PQ為邊作正方形PQMN,使正方形PQMN和△ABC在BC的同側(cè),設(shè)運動的時間為t秒(t≥0).
(1)當點N落在AB邊上時,t的值為 ,當點N落在AC邊上時,t的值為 ;
(2)設(shè)正方形PQMN與△ABC重疊部分面積為S,求出當重疊部分為五邊形時S與t的函數(shù)關(guān)系式以及t的取值范圍;
(3)(本小題選做題,做對得5分,但全卷不超過150分)
如圖2,分別取AB、AC的中點E、F,連接ED、FD,當點P、Q開始運動時,點G從BE中點出發(fā),以每秒 個單位的速度沿折線BE-ED-DF向F點運動,到達F點停止運動.請問在點P的整個運動過程中,點G可能與PN邊的中點重合嗎?如果可能,請直接寫出t的值或取值范圍;若不可能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com