【題目】已知線段CD,按要求畫出圖形并計算:延長線段CD到B,使得DB= CB,延長DC到點A,使AC=2DB,若AB=8cm,求出CD與AD的長.

【答案】解:如圖所示:

設CD=x,

∵DB= CB,

∴CD=BD=x,

∵AC=2DB=2x,

∵AB=AC+CD+BD=8,

∴2x+x+x=8,

x=2,

∴CD=2,AD=AC+CD=4+2=6,

答:CD的長為2cm.AD的長為6cm.


【解析】先按要求畫圖,發(fā)現(xiàn):AB=4CD=4BD,設CD=x,根據(jù)AB=8列方程解出x的值,再求CD和AD的長.
【考點精析】認真審題,首先需要了解兩點間的距離(同軸兩點求距離,大減小數(shù)就為之.與軸等距兩個點,間距求法亦如此.平面任意兩個點,橫縱標差先求值.差方相加開平方,距離公式要牢記).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某書店為了迎接“讀書節(jié)”制定了活動計劃,以下是活動計劃書的部分信息:

1)陳經(jīng)理查看計劃數(shù)時發(fā)現(xiàn):A類圖書的標價是B類圖書標價的1.5倍,若顧客用540元購買的圖書,能單獨購買A類圖書的數(shù)量恰好比單獨購買B類圖書的數(shù)量少10本,請求出A、B兩類圖書的標價;

2)經(jīng)市場調查后,陳經(jīng)理發(fā)現(xiàn)他們高估了“讀書節(jié)”對圖書銷售的影響,便調整了銷售方案,A類圖書每本標價降低a元(0a5)銷售,B類圖書價格不變,那么書店應如何進貨才能獲得最大利潤?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圓的面積S與半徑R的關系是 , 其中常量是 , 變量是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為更新果樹品種,某果園計劃新購進A、B兩個品種的果樹苗栽植培育,若計劃購進這兩種果樹苗共45棵,其中A種苗的單價為7元/棵,購買B種苗所需費用y(元)與購買數(shù)量x(棵)之間存在如圖所示的函數(shù)關系.

(1)求y與x的函數(shù)關系式;

(2)若在購買計劃中,B種苗的數(shù)量不超過35棵,但不少于A種苗的數(shù)量,請設計購買方案,使總費用最低,并求出最低費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=c,AC=b.AD是△ABC的角平分線,DE⊥A于E,DF⊥AC于F,EF與AD相交于O,已知△ADC的面積為1.

(1)證明:DE=DF;
(2)試探究線段EF和AD是否垂直?并說明理由;
(3)若△BDE的面積是△CDF的面積2倍.試求四邊形AEDF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】利用公式計算:20152﹣2014×2016.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形OABC中,OA=8,OC=4,沿對角線OB折疊后,點A與點D重合,OD與BC交于點E,則點D的坐標是(

A.(4,8) B.(5,8) C.( D.(,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若點A到x軸的距離為3,到y(tǒng)軸的距離為4,且點A在第二象限,則點A的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各題中正確的是(
A.由7x=4x﹣3移項得7x﹣4x=3
B.由 =1+ 去分母得2(2x﹣1)=1+3(x﹣3)
C.由2(2x﹣1)﹣3(x﹣3)=1去括號得4x﹣2﹣3x﹣9=1
D.由2(x+1)=x+7 移項、合并同類項得 x=5

查看答案和解析>>

同步練習冊答案